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Thus for v0 c tg  ~ = a the maximum force derived by the theory of incompressible 
fluid exceeds by 62 % that calculated for a compressible fluid. 

The author thanks E. I. Grigoliuk and S. S. Grigorian for discussing this problem. 
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Averaged equations of motion of a turbullzed fluid in the presence of a preferred 
orientation of turbulent vortices were consu'ucted in [1]. By taking account of 
an additional kinematic  variable, the angular velocity of vortex seLf-rotation, 
the system of equations in [1] differs from the earlier theory of Mattioli [2]. 

The equations from [1] are supplemented herein by a turbulent energy balance 
equation in which the work of the moment  stresses and the antisymrnetric com- 
ponent of the Reynolds stress tensor is taken into account. It is shown that the 
inner energy determined by turbulization of the fluid depends on the root -mean-  
square values of the translational pulsation velocities and the anglular vortex 
velocities. The entropy and "temperature" of turbulization are introduced; the 
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entropy production equations are formed. The use of the ~lsager formalism of 
the thermodynamics of irreversible procelses is disctwsed. The stationary state 
of the system, characterized by an influx of negative entropy (this latter is typi- 
cal for biological systems [3, 4])  and a constant rate of entropy production, is 
considered. 

1 .  M a u ,  m o m s ~ t u m ,  and  m o m e n ~  o f  m o m e n c u m  b t l a n o e ,  The bal- 
ance equations of the mass, momentum, and moment of momentum of a nonpolar fluid 

can be represented as [1] -~t  <P) 0 

o 0 0 <to> j 
o--/- <puD + ~ <t~u~uj>j = ox¢ + <F~> 0.1) 

ox i <~iz~tt~¢>~ + <eil~tl~>~ + <s~t~¢tF~> 

Here p is the fluid density, U~ the veltx,'ity, Fy the volume force, ~t~ the alterna- 
ting Levi-Civita tensor, < ) the symbol for averaging with respect to a volume ele-  
ment in ~ space V --  AXxAX~AXs, Xj coordinates of the center of gravity of the 
volume V ,  ~ j  = z j  - -  Xj is the coordinate of a point within the volume V relative 
to the center of gravity X~; < )~ is the symbol for the average over of the face of 
the volume V to which the X~ axis is normal, l e t  us examine the case when the fluid 
flow in the volume ~/" ~ d~ld~d~s satisfies the Navier-Srokes equations, i. e. 

where p is the pre~ur¢, ~ the kinematic viscority, and 8~j the unit tensor. The velc-  
c | ty field in the volume V ~-  AS is represented as [1] 

0U~ 
u~ (z~, t) = U~ (X~, t) + ~ (z~ - X~) + v~ ( ~ ,  t) (~.2) 

where "U~ is the mean mast velocity of the fluid, v~ is an irseguiar component (pulsa- 
tion) of the velocity. In the scale d (A ~>  ~) the quantity ~ is also representable as 
the fix,st two members of the Taylor series 

v, (~ )  = w~ ( ~ )  + (Ow, / d ~ )  ( ~  - -  ~.~) 

i.e. the following OO'~ Ow t 

is valid in the volumes A ~/--~ ~ instead of the representation (1.2).  Here ~ is the 
coordinate of the center of gravity of AV. Averaging the field (1.3) with respect to 
the volume AV yields _ 06'  i 

u~ (~ ,  t) = U~ (X~, t) + ~ ~ + w~ (:~, t) 

The elementary moment of momentum m~ can be represented correspondingly a~ 
( OU, , Ott,, ) 
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Let us cake the average of rn~ over the volume A V. We obtain 

--m~ ( ~OUJ , ) / OU, O~mO'vJ ~.] 

where i ~  is the s Fecific moment of inertia [1] ofche fluid in the volume AV. Then, 
caking the average ms over all the volumes A V contained in V, we obtain 

v v 

Here Im~ it the SlmCific moment of inertia [5] of the fluid in the volume, V and the 
condition imposed on the field w j  con~ponds to the simplifying assumption that only 
turbulent vortices of scale c~ are moment of momentum carriers. As in [1], let us neg- 
lect the first summand in the first item of (1.4) in the case of high tm'bulizarion, f. e. 

l let us set (ra~) ~ . ~ .  Ifche volumes AV are symmetrical, chen im~ = ~- ~m~ 

and also i / OU~ Ow i ",,) 
M~ = <i¢}~), ~ = .--2- e~: Q, 0-'~'~ + - ~ /  

where the mean field of natural angular velocities o)~ can he introduced [1] such chat 

M ,  ---- J(O.,  + ¢o0, Jo)~ = <~*~i*) 
. .~. , t OU j 

] ----- ($), fl~ = ~w~) = ~ eo,  o-'27 ' d¢o~* ---- ~*¢D~* - -  <~*~*> 
where the asterisk denotes the pulsation. As regards che pulsation M i* of the moment 
of momentum, in conformity with the above it is then defined at follows : 

Ms + M~* = eii~ p u ~  (1.5) 

The momentum flux generated by turbulence is represented, as is known, in the form 

<pu,uD~ ~ <p) U~U~ - -  B ~  (t .6) 

where R ~  is the Reynolds stress. According to [ I ] ,  we have 

Ri~ / " "\" 

i .e .  the tensor Bi~ generally concalm antlsymmetrle components. As i$ customary in 
hydromechanics the momentum flux associamd with the mean velocity gradient in the 
scale A is neglected in (1.6). By using the representation (1.3), it can also be shown 
that ~i~ consists of the two components 

The former corresponds m the mean translational pulsatiom of the fluid in the volume 
A V, and the latter is due to its romtiom around the centers of mass A V. Let us repre- 
sent the moment of momentum flux [1] in conformit~ with the relationship (1.5) as 
(~ti~ are the moment stresses) 
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e .~  (put~uj>~ ~ M~U~ - -  ~t~i, ~t~¢ = - -  <M~*v~>~ ( t .7)  

C h a n ~ ,  in ~he m o m e n t  o f  i n e r t i a .  Let us multiply the eontinui.y 
equation valid [1] in the micrcscale ~id.z~s of a turbulized fluid 

bp 0 (puj) . 0 
a-'i- + az#' ' 

by ~ , ~ .  Then. taking the average with respect to the vloume V, we obtain 
a 

It is easy to perform the following ~ansformations. 

< P ~ m >  = I~.~ + <~c,~> 

as well as to determine the pulsation ~km* of the moment of inertia 

P ~ ,  = < p ~ >  + f~.m* 

Then the flux of the moment of inertia is determined as follows: 

and Eq. (2. I)  takes the form 

(2.2) 

The equation of the changes in the moment of inertia (2. 2) extends the equation derived 
earlier in [6] fc~ a fluid with inner structure and in [5] for an c~dinary fluid, to the case 
of tm'bulent flux. The lntrimlc moment of inertia of liquid-crystalline media was con- 
side.red in ['7]. If it is considered d~at the moment of inertia irimt of a fluid in a unit 
volume Y satisfies the work equation [5] 

then by forming the difference between (2.2) and (2. 3), we find 

8-T (35~m) + (38~,,.U~) =- 2 <~k,.> --  a - ~  <~*~'D~ (2.4) 

where e~t is the strain rate tensor (see formulas (3. 6)), and 
I~ -- xhIS~,., <Ikm) "., x/~JS~m 

If changes in the moment of inertia J are neglected because of local strains, ~en(2.4) 
becomes 8J #J @ 

a-T + u~ ~ = - -  a - 2 T  <t*~,~>~ (2.5) 

The modiflcati,m of the theory in wblcb 
aJ aJ # 
o-T + u~ ~ = o, aT~ <~*"~>~" 0 

is considered in [1] and herein later. 



Asy~ne~rlc  ~echan le s  of  ~u~bulen~ f l o w s .  Ene~'~y and en~.opy 8'7 

3. T o t a l  e n e r g y  b a l a n c e .  Let m write the r~r~l energy balance of a fluid in 
integral form for an arbi~av/volume V~ fixed in space and bounded by a s~face ~ : 

a ~ ! (e u'u'' 1 u~u,, 

where • is the inner energy of the flu/d, q is the heat flux, Q are the internal heat 
sources, (l) i is the vectc~ of the foul angular velocity of a fluid particle. Henceforrlt, 
as in (1.1), we shall assume that the moment su-enes C/n and the volume rnoments G~ 
governed by t°ne molecular structure of the fluid are identically zero. 

If we select the volume V ~ AX~AX~AX s ~-, AS as the volume ITt, where A is 
~ e  lonear scale of V, then (8.1) can be represented as 

O O <qj)j 
<t~jul>~ + aX'-'-~ + <Q> + <F~u~> (3.2) 

Let us take the average of the kinetic energy of the turbulized fluid by using the repre- 
sen~Uon (I .  3) 

+ pu~u~ i [' 0~7 i ) t 
" ~ -  T pU~U, + pU~ \ aT~ ~ + v~ + --.2- pw,w~ + 

i O~ t aU~ ~ ~ Ow~ 
(1~ - ~ )  ( ~  - ~,,) + 

aU~ aw~ o~r i aw~ 
o--z7 o-.C- ;., ~ - ~,.1 + p~, -~-7 ~, +ow~-.~/(~,-~,) (3.3) 

We take the average of(3.3) over the volume AP" 

t 1 - - / O0"i ) - 

-r  = - r p v , v ,  + pv,/o-zT , + + 

T P  ~"~-7 o'n7 g':~ + \ ~'n'i-. + o~ / ,, oz~ + ~-~". ) z,,, (3.4) 

Subsequent averaging over all the volumes AV contained in V yields 

< + p u , u i > = + ( p > U ~ U i + + I ~ m  ~a°'~ off i + ~ <pw,,,,> + 

:~ '2  + "~'J : :~T + -~C/)2 (3.s) 

It can be shown that the last summand in (3. 5) is l ' ~ t ~ n ~ d  as 

t ', ) ÷ --.~ \ O.-~ + - - ~  ) (3.6> 
( au~ oU~ I ( aw~ aw~ 

OZ~ + OZ i 
~ ~=~ 
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Therefore. a contribution w the kinetic energy in~oduced by the strain rate field et~ 
in the scale d appears. Neglecting this effect, as well as the energy generated by the 
mean gradient in the scale A, we obtain 

<l/~pu~ui> = 1/,,. <p> U~U, + 1/= <pw#z,~> + 1/.. <~i~ i>  (3.7) 

We furthermore t tamform the last summand in (3.6) 

1/~ <i~jSj> = 1/~ <(2 + ~,) (.% + q>j,) (p.~ + ¢Vj*)> = 

Inserting this result into (3. 7). we find 

<l/~pu~u~> = ~/o. <p> U~U~ + 1/~3" (g~ ÷ o~) ( ~  + oJ~) ÷ <p> E (3.8) 

where E is the inner energy of the turbulent field 

E = E~ + E.  (3.9) 

We define the kinetic energy pulsation as follows : 

Q/zpu~ui)* -.= Ui (pvi) "+" (fli q- ¢ot) M i *  -+- (pE)* (3.10) 

where E *  - -  Eta* -k E~,* is selected so as to comply with the condition 

/,1/zpu~u~> A- t/.~ (pu~u~)* = ~/z pu~u~ ( 3 . i l )  

Let us transform the kinetic energy flux analogously to the momentum and moment  of 
momentum fluxes 

t \ / / i  i 

Hence 
(~/~ pu~utu~>~ ~ 0/~. pu~u~> U s + (~/~ pu~u~)*v~)~ 

We now use the representation ( 3 , 1 0 )  

and finally obtain (3 . t2 )  
t 

l e t  us note that it is also possible to carry out the following transf, xmgt iom:  

<peu~> = <p> <e) U~ q- <(pe)* v~)~, eit~ <putu~>~ = etl~lftk 

<F~u~> ,~ <F~> U~ + <F~*v~.>, <F~*v~> = C~ (O~ + ¢0~) "4- II (3.t3) 

4 .  M o t i o n  a n d  lag/fly $ q u a t i o n t ,  Now. we substitute the msultant aver- 
aged ex'pressiom into the balance equations of the mass. momentum, moment  of m o -  

m e n t u m  and energy. We then obtain [1] the differential equations of motion in the 
following fo~m : 
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0 <p> a <p> b"j 
#t + ox~ = 0 (4.i) 

~ - L -  a <0> UiUj aRij ~ i j  
t . oxj = ~ + ~ + (F,> (4.2) 

a o °~i~ (Rz~ + *z~) + c,  (4.3) a-i-y (~, + o,) + ~ d (.q, + 00 uj  = ~ + ~,,~ 

ad 0d0'j 
ot + W = -- (~*vj>j = 0 (4.4) 

The total energy balance equation (3.1) becomes in conformity with (3. 8), (3.12), 

(3"13)( 0 ~ ' ~ 7 ) (  t i - J ( ~ , + o ~ , ) ( Q ~ + o ~ , ) + E ) =  <p) ~-~ + Uj e + ~ U,U~ 4- 2 <p---7 

a (U~R,j + (Q, + e0 ~,~ + w,~U,) + Q + II + <FD U~ + C~ (Q~ + o~) + 

T ~ j ( - -  ((pc)* vj)j --  <(OE)* vj)j + <t,~*ot)j + <qj)~) (4.5) 

Now multiplying gq. (4.1) by Uf and Eq.(4.2) by the total angular velocity 01 + ~f. 
we find the equatlom for the kinetic energies of the mean ttantlational motion and the 
mean rotational motlcm 

0 )[ I U i U t ) - -  U, OR,, ~r~, 

o i coi)) (9., . o~) 

e,~ (R,~ + w,~) ( ~  + ~)  + C, ( ~  + o,) (4.'/) 

Subtracting Eqs. (4.6), (4. 7) from the total energy equation (4. 8) and taking amount of 
(4.1) and (4.4), we obtain the heat influx equation (the equation for the total inn~ ener- 
gy of the turbulized fluid) (4.8) 

( o  0 ) . ~ tO[r, a~r,~ o( t~ ,+o, )  
p . ~ -  + v,  ~ .  (e + ~) = ( n , / +  =~ ) ~ ~Tx-7/+ ~--x7 / + ~,~ ox~ - 

0 --  ~ + wu*) eu..:o, + ~ ( -  <(pc)* v~>~ --  <(pE)* v~>~ + <t~v~>~ + <q~>~) 

Here R~, B~,  ,~ ,  ~ are, respectively, the symmetric and antisymrne~ic compon- 
ents o f t ~ e  $~ess  t e n s ~  ~f~, wf~, for example 

~|~ = x,~ (~,~ + R~,), ~ ffi ~/~ (~,~ -- ~,) 

The derivation of (4. 8) differs from the ordinary derivation [8] of the turbulent energy 
equation by talcing account of the presence of the rotational degrees of freedom of the 
system characteristic for asymmetric hydromechanics [9]. 

~. ~ntx'op'y Of | t u r b u | i | e d  f l u i d .  The balance equation o f ~ e  entropy 
in the microvolume did is 0 (psui) Ops i~ ~ q ~ 
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where qi / T is the entropy flux, T is the temperature, and o is the rate of local ent-  
ropy production i #"i qi aT Q 

The entropy balance of a turbulent system is fccrned [10] by a statistical averaging of 
Eqo(5.1). Herein, as in [11], the procedure for taking the average o f (5 . 1 )  is perfocmed 
over the volume V but the n e ~ i t y  of taking the average over the areas [1] also is 
hence taken into account 

i / OUi \ i i <q~>i O<T> 
<:> = ~ (~s + <p> 8ij) (-~) + ~ ~ + ~ <Q> + <r>-, ox s 

aU~ 

For simplicity, the e ffec~ of temperat'u~e and p~e*mtn~ putua~ous (cf [11])are omitred here. 
~ e r e f o r e ,  the production of the averaged en~opy s corresponding to the ~an~tion 

of mechanical  energy into heat is determined by the work of the mean viscous s u ~ n  
r t j  over the field of mean velocities U s as well as the inner uaurce (p which corre- 
sponds to the additional wofl{ of viscous m~se.s due to t~bulizat ion of ~ e  fluid, h4c~- 
over, the heat fluxes, governed by the influence of t~rbulization of the contact heat  con- 
duction <qi>i appear in (5.2).  and the heat transfer <(ps)*V~>j which is convective 
in nature in the .qcale dV but turbulent diffusion in the scale V ,  is taken into account 
also. 

We emphasize that together the first two summands in the expression fur < o) cccre- 
slmnd to the total viscous dissipation of mechanical  energy into heat (in the case of  no 
transverse shear the viscous dissipation reduces to an energy sink ~). If  the balance 
equation of the inner energy (heat influx) which is valid in the volume dP" 

ap~ a (p~.~) a.~ ,_ ~ -~ Q (5.3) 
Ot + Ox~ : tU-ax i ~ ax i -- 

is averaged in an analogous manner over the volume ~", then we obtain 
(5.4) 

(~<e> , ,-~. O<e> ~ OUi O<qi> 0 
<p>,~, ~ u, a-~2T/=~-~ +~+ ,ox  i +<Q)+-X27<-(p~)*v~)~ 

The Gibbs relationship for the mean entropy <~> an~ energy <e) 
d <e> d <s> d 1 d 0 

<p) ~ = <r> d~ P ,~ <p> ' ~-T = ~ "  + US a x  i (5.5) 

fol lm~ from a comparison of (5..2)and ~5.4) if we me the equalit~ (cf [I0]) 

Let us subtract (5. 4) from the equation of the total inner energy of a turbulent f ield.  
We then obtain the equation determining the inner energy of the intrinsically turbulent 
supenu~cture 

R,s "T i'xr 7 + "~'T/- 

R i ~ a ) ~  + V'O " aX~ ~ !  + < - -  pE*v.i)S + g" (5.6) 
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where the turbulent energy sink is 

ezj -- (5.7) 

We note that the viscous dissipation due to pulsations is interpreted as an internal sink 
in the turbulent energy equation in [ 12]. 

The work of the turbulent stremes RO,  ~tJ over the field of mean translational and 
angular velocities results in dissipation of the mean field mechanical  energy into the 
energy of chaotic turbulent motion, which xs "thermal" in nature in the scale V (but 
mechanical  in the scale dV).  The turbulent en;zotr ] ,~ and turbulization temparatt~e 
O can be introduced corresl~ndingly as follows : 

0 ( ~  q- o~ i) 0 
+ ~ <-- pE*vj)  t + W ~ OXj 

or 

(5.8) 

Here .~. is the local generation of turbulent entropy, and the quantity ~ / e is a sink 
of the turbilent enu~py S.  Thin, the work of the Reynolds and other turbulent su~.ues 
m u l l s  in growth of the en~opy (chaos) of turbulence, and viscous dissipation diminishes 
the entro W (chain) of tufoulation. 

Let us examine the particular case of a local s t a t i o / l ~  state. We neglect ttu~ulent- 
diffwion energy ~ansfer and the pulsation work of viscous su~ses  on the boundaries of 
the volume V. Then the sink is ~ ~ - - ~ ,  and Eq. (5. 8) of the growth in t~oul izat ton 
en~op~ reduces to the following: 

d S I d t  = "~, - -  ~ l e  = 0 (5 .9 )  

Thus, in the stationary case the positive production ~ of turbulent entrol~ / S must 
be coml~,'.~sated by the negative influx of entro~/ ~ / O (or the positive influx of 
negent~ol~/). In other words, in a specific sense a turbulent field is simila~ to a bi@lo~i- 
cal  system [3, 4].  Indeed, the internal conflguratiom of both systems are sustained be-  
cause of the continuous influx of energy. It should be emphasized that this remark on 
the influx of negative ent~ol~ / corresponds substantially to the known Richardson-Kolmo- 
gorov l~inciple about the energy balance of the equilibrium hierarchy of vortices [8]. 
Furthermore, from (5. 9) in this stationary case we have that the work of the turbulent 
stresses equals the volume viscous dissipation, and in combination with the work of the 
mean viscous s ~ . s  yields the total dissipation of the mechanical  energy into heat.  
The Gibbs relationship for a tu rbu len t  field 

de dS l d i (5 . i0)  
dt . . . .  0 - - ~ -  -~- ~ R i ~  0 dt e,~) 

follows from (5.6) and (5. 8), i .e .  the p a r a m e ~  of thr  state of the turbulent ~]stem 
are the temperature 0 and the mean density <p) .  

According to (3. 9), the inner energy E consists of two parts, the translational Ew 
and the rotational E~ (the inner energy oftutbulization),hence, a rather more general 
construction can be carried out by in~zoducing the two entropies S~ and S m and the two 
temperatures Ow and O~, respectively : 
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dew Aiiwd~i~ dS~ l d 1 
dt ~- - -  = O~ ~ -4- --~-(RijSii ) -~- (p> (5.ii) 

dEo, d.~ dS ~ 
- -  , . 0 )  

dt "7- A i ;  " -~  -= 0'o dt  

where A~ and A~ are some forces (stresses) working on the displacements (strain in- 
crements) dX~ and d ~  i. Together the relations (5.11) yield 

dE dS dS~ d o~ .o, 

where 0 ---- 0~, dS = dS~ + d 3 .  is the increment in the total entropy of turbulence. 
Now. if the inner energy of the turbulent field is eliminated from (5. 6) and (5.12). we 
then obtain a generalized equation for the entropy balance 

d S  = (O ~ Oo) ) (p)  ~ Jr ( R i j  s ~ rij  s) \ ~ - ~ j /  ~ ( R i j  a ~ ri.j a) 8 i jk~ /¢  J r  o <p> 

a ~  a a 

Here r~j', r~, 110 ate some st:~.~ temor components; they can be exixe~ed in terms 
of A~, A~,if  d ~  ~dr, dXi ~ / d t  are related linearly to the temors 8U t /OX 1 and 
8(Qt Jr ~i) / OXI. The interoduction of these quantities corre~ond to taking account of 
the "elastic" lxoperties of the turbulization. The possibility of such effectr is mentioned 
in [13 - 15]. It is absolutely necenary to take them into account in analyzing the tus° 
bulization of non-Newtonian fluids. 

The inequality of the temperatures O d= 0,., permil~ obtaining the nonequilibrium 
transition of turbulent field energy from translational to rotational "degrees of freedom'(*). 

6.  T h e  c l o s u r e  p r o b l e m .  To find the governing relat iom(between the dyna- 
mic and kinematic variables), we can use the Onsager formalism of the thermodynamics 
of irreversible processes. Let us say that the introduction of turbulent viscosity is e,~eno 
tially a particular case of such an approach. 

If we pcoceed from the requirement of a local growth in the total entropy dSt = dS Jr 
dJ, then the mutual influence of the strains generating the entropy in the microscale 
(dV) and the macrmcale (V) will cousequently be taken into account, l:lowever.we will 
consider that turbulization exerts no influence on the relation between x U and 0 Ul/OX t, 
say. Correspondingly. we wiU me the requirements of positivlty of <o> and ~ independ- 
ently. The difficulties hence are related to the constructiom for the s~eams in the scale 
V, i . e .  for the turbulent field. 

The closing relationship between thermodynamic strearm (of momentum and moment 
of momentum) Ja and the characteristics of the averaged field X~ can be derived with 
the use of the generalized [17] Onsager principle 

J~ s I dt~ I L~,~ ( z -  x', t --  t') X~ (x', t') dz" (6.i) 

where L=a is the matrix of Onsager coefficients of functions of the turbulent field 
structure. This relationship is nonlocal, and yields averaged relationships for a rapidly 

*) The thermodynamical analysis of the hierarchy of Richardson-Kolmogorov vortices 
naturally requires the introduction of a whole spectrum of "degrees of freedom", and 
the energy, temperatuse, and entropy, respectively, see [16].  
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changing field structure. Formulas of the kind of (6.1) may be considered suitable for 
calculating turbulent flows in alteznating mode: [8]. Equations (6. I )  can usually be 

reduced to l~  = L~X~ (6.2) 

where L~ are functions of the point at which ]a and X~ are defined and summation 
is carried out with respect to recun~nt subscripts. Nonzero elements of La~ and ,~ ~= 
make it  possible to take into account the cross effecls and the Curie rule to separate 
the interaction between streams of even and odd tensor dimension.  New cross effects 
may obviously appear in asymmetric mechanics. For instance, the presence of a peculiar 
thermomechanical  effect  related to the asymmetry of the moment-sU~.u tensor was 
pointed out in [9], 

Since the sU~cture of the turbulent field depends itself on streams J~, the related 
Onsager type formulas are complex nonlinear relatiomhips (while the effectiveness of 
linear formulas (6.2)  is to a considerable extent lost). Owing to this, the matrix of coef-  
ficients L ~  in the case of a turbulent field depends not only on parameters of  .~r.ate 
(e. g. on t t~u lenne  temperature 0 ) but, also, on the averaged parameters of velocity field 
Xa ( i .e .  on temors OUi / OX~, eO~¢o~, O<e'vj>j / aXi, . . . ) .  The interaction of various 
s~reams X~ can affect Lab, which may result in additional cross effects. The depend.. 
ence of internal structure on streams X~ implies that the exclusion of one (or a part of 
it) of  the X~ streams may result not onIy in the change of cross coefficients La~ but, 
also, of diagonal elements of that matrix. Because of this the conventional requirement 
for pOSitive determinacy of each of the terms in the Sum of products 

used in [11] is no longer applicable, and the only requirement is that E must be strictly 
positive. Owing to this, the superposition of various streams can theoretically yield ne- 
gative individual elements of matrix L ~ .  This can possibly explain the effect  of the 
so-called negative viscosity [18].  However, it should be borne in mind that the infer- 
ence of the existence in certain flows (see [19]) of negative turbulent viscosity is based 
on the comparison of profiles of averaged values of ~i and Btj (or U and Bis in the 
problem of flow in a circular channel [19, 20]) and their conventional interpretation 
without taking into consideration the antisymmetric component of Reynolds s~reues. 
Whether it is sufficient to allow in such cases for asymmetric effects (see [20] ) or it will 
be necessary to introduce negative transport coefficients, can only be determined by the 
comparison of specific calculatiom with experimental data. 
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