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Thus for vy ctg B = a the maximum force derived by the theory of incompressible
fluid exceeds by 62 % that calculated for a compressible fluid,

1,

The author thanks E, I, Grigoliuk and S,S, Grigorian for discussing this problem,
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Averaged equations of motion of a turbulized fluid in the presence of a preferred
orientation of turbulent vortices were constructed in [1], By taking account of
an addjtional kinematic variable, the angular velocity of vortex self-rotation,
the system of equations in [1] differs from the earlier theory of Mattioli [2].
The equations from [1] are supplemented herein by a turbulent energy balance
equation in which the work of the moment stresses and the antisymmeuic com-
ponent of the Reynolds stress tensor is taken into account, It is shown that the
inner energy determined by turbulization of the fluid depends on the root-mean-
square values of the ranslational pulsation velocities and the anglular vortex
velocities, The entropy and "temperature” of tizbulization are introduced; the



84 V.N.Nikolaevakil

entropy production equations are formed, The use of the Onsager formalism of
the thermodynamics of irreversible processes is discussed, The stationary state
of the system, characterized by an influx of negative entropy (this latter is typi~
cal for biological systems [3, 4]) and a constant rate of entropy production, is
considered,

1. Mass, momentum, and moment of momentum balance, The bal-
ance equations of the mass, momentum, and moment of momentum of a nonpolar fluid

can be represented as [1] a )
=P 4 5x— <Pud; =0
7

o<t .
(pu Uip; = r'.'u;']- L+ (FD (.hH
i

<pu¢>

= $CusPhde) + B.X CeuPU Bl i + EpPUilh, i =

7 -
17 CCusbituidi + CRanbiedk + CegeEiF i
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Here p is the fluid density, U; the velocity, F; the volume force, &;y; the alterna-
ting Levi-Civita tensor, ¢( ) the symbol for averaging with respect to a volume ele-
ment in the space V = AX,AX,AX,;, X; coordinates of the center of gravity of the
volume V, §; = z; — X; is the coordinate of a point within the volume V relative
to the center of gravity X;; ( ); is the symbol for the average over of the face of
the volume V7 to which the X, axis is normal. Let us examine the case when the fluid
flow in the volume dV = d% d&,dE, satisfies the Navier-Stokes equations, i.e,

2 ou, ou, Bu; B
lij==lj; = ('-P-i--'g'PV-gE—t)ﬁii-*'PV (‘;g"_—-i-'gg_;-). LV

where p is the pressure, v the kinematic viscosity, and §;; the unit tensor, The velo-
city field in the volume V ~ A? js represented as [1]

U .
wi(zg, t) = U; (X4, t) + ax; (zp — Xy} + vi (x4, O) (1.2)

where ‘U, is the mean mass velocity of the fluid, v; is an irregular component (pulsa-
tion) of the velocity, In the scale d (A > d) the quantity v; is also representable as
the first two members of the Taylor series

v (&) = wi (&) + (Gws / d&y) (5 — &)

i. e, the following e
Uy (xh t) = U (Xln t) + EA l wt(gln ) "|T' -d?(gk - Ck) (1~3)

is valid in the volumes AV ~ d° instead of the representation (1,2), Here {yis the
coordinate of the center of gravity of AV. Averaging the field (1, 3) with respect to
the volume AV yields _

ui (Sa, t) = Ui (X, ) + C;. -+ wi(Cx 1)
The elementary moment of momentum m; can be represented correspondingly as

an ) aw]'
mi = eijPufy = €ijid (U it gx- Wit g G — §m)) 38
m m



Asymmetric mechanics of turbulent flows. Energy and entropy 85

Let us take the average of m; over the volume AV. We obtain

- . ouU; _. N /A
mi = &ij (PU:'CI: + X, PEmEs + Pw:‘s;.-) - E4ji (TA—,: —+ o)

. i -
bmie = g | © G — L) G — L) dEa de s
AV
where im is the specific moment of inertia [1] of the fluid in the volume AV. Then,
taking the average 7; over all the volumes AV contained in V, we obtain

aU ; , A 8U;  ow;\ ,
<mi> = e‘i].h' ‘———dA; I'mh' + i‘fi, :Ji = Eijli §<—64k’m -_ ‘-"—'a;m lmh‘> (1.‘!)

1 - L] b3 1 - N L L —
Ini = _V-Q pL.EmdC1d3, ds,  2ije —l-g pust, dl dladis =0
¢ v
Here /., is the specific moment of inertia [5] of the fluid in the volume .V’ and the
condition imposed on the field w; corresponds to the simplifying assumption that only
turbulent vortices of scale ¢ are moment of momentum carriers, As in [1], let us neg-
lect the first summand in the first item of (1, 4) in the case of high nurbulization, i, e,
let us set {m;> = M. If the volumes AV are symmemical, then img = 5 Opy
and also " aU; ow; -
M; = D), D; = -5~ &ija ‘a"f:' + TC,;
where the mean field of natural angular velocities »; can be introduced [1] such that
M;=J(Q; + o), Jo; = i*D*)
U ; . .
J=(), Qi=(D)= ':—Eij,; —-_aX] ,  Jo* =i*Q* — (i*D*>
where the asterisk denotes the pulsation, As méuds the pulsation M;* of the moment
of momentum, in conformity with the above it is then defined as follows:

M; + M* = g5 pusds (1.9
The momentum flux generated by turbulence is represented, as is known, in the form
Cpugusd; = (p> UiU; — Ry; (1.6)
where R;; is the Reynolds stress, According to [1], we have
R;; = —{pViV;>;
i.e, the tensor R;; generally contains antisymmetric components, As is customary in
hydromechanics the momentum flux associated with the mean velocity gradient in the

scale A is neglected in (1.6). By using the representation (1, 3), it can also be shown
that R;; consists of the two components

oU . ow; ( oU ; ow;
o 20 — LI S LRt Ny ¥
Rl] <pw1wJ>J << a‘X}: T a;x > a‘Xm 1 ocm ) L.\'m>].

N

The former corresponds to the mean translational pulsations of the fluid in the volume
AV, and the latter is due to its rotations around the centers of mass AV. Let us repre~
sent the moment of momentum flux [1] in conformity with the relationship (1. 5) as
{1i; are the moment stresses)
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ea P ELD; = MiUj — pijy pij = — (Mi*v; (1.7)
2, Changes {n the moment of {nertia, Letus multiply the continui.y
equation valid [1] in the microscale dx,dr,dr; of a turbulized fluid

_37 0.2:]

by 8xSm. Then, taking the average with respect to the vioume V, we obtain
2 <Phikm) + 5 (Phebmitsds = PO + PuESm  (21)
It is easy to perform the following transformations:
$PEeEm> = Iym + {bgm
as well as to determine the pulsation i,m* of the moment of inertia
PEEm = <PExEm)> + Tkm*
Then the flux of the moment of inertia is determined as follows:
(PEEMEID; = PEkEmD U+ Cim™V5);
and Eq, (2,1) takes the form

;174 U,
7 (Phekm) + 57 Phekm) Uy = X" (PEntm> + = <PEE> +
dw
agh imn"f- _:"'nk>'— <"k‘m v’)) (2‘2)

The equation of the changes in the moment of inertia (2, 2) extends the equation derived
earlier in [8] for a fluid with inner structure and in [5] for an ordinary fluid, to the case
of trbulent flux, The intrinsic momeant of inertia of liquid=crystalline media was con-
sidered in [7], If it is considered that the moment of inertia Iym of a fluid in a unit
volume V sarisfies the work equation [5]

ol ,m oI, 14
—5r—+ Ui5Y = B om+ 52 I @.3)
then by forming the difference between (2,2) and (2. 3), we find
) 3 3
3t J8km) + 53; TBemU3) = 2 clexm> — 737 <#*03>i 2.4)
where e¢;x is the strain rate tensor (see formulas (3,6)), and
tem = Y/3i8xm, Ckm> == /o 8em
If changes in the moment of inertia J are neglectzd because of local strains, then(2.4)
becomes .
Ty +U1T==—T %5 (2.5)
The modification of the theory m which
o7 9
FHUITG =0 Fgyareni=0

is considered in [1] and herein later,
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3, Total energy balance, Let us write the total energy balance of 2 fluid in
integral form for an arbitrary volume V, fixed in space and bounded by a surface §, :

aat § (e+—-)dV+§ (e+—)u,,dS sstinuid‘sn‘*'SQndSn‘"
& S

§ Qadv + §ci,.®i ds, + § Fou,dv + ‘5 0G, D, dV (3.4)

where e is the inner energy of the fluid, ¢ is the heat flux, () are the internal heat
sources, @, is the vector of the total angular velocity of a fluid particle, Henceforth,
as in (1, 1), we shall assume that the moment swesses C;,, and the volume moments G,
governed by the molecular structure of the fluid are identicaily zero,

If we select the volume V = AX,AX,AX, ~ A? as the volume V,,where A is
the lonear scale of V, then (3,1) can be represented as

a <P¢>

+ —T(PeuD + 5 (— ui"'i> +T< 7 PULL; =
8 (qJ i

(3.2)

Let us take the average of the kinetic energy of the tmbulized fluid by using the repre-
sentation (1, 3)

_6-f,- iy 5 +

' 8T,
%Puiui ='%—PU1'Ui+ pU; (#Ek"*‘ vi) +‘%‘pwiwi+

U
R s ot AU YR ac"(&k 80 G — L)

au, o
77{- 6: =78k Gm — Tm) + P _aj'f‘ Bk + pwi?{i"(&k — i) (3.3)

We take the average of (3, 3) over the volume AV

1 { - - v -
5 Puu; = _PUiUi+ pU; ("T;;k + wi> -+ %‘Pwiwi 4+

au. U, v, dw, ovU, ow
-}PT—X—C;&:‘-I- (7:-*-7';—;-) ( aX + a;,: )im (3.4)

Subsequent averaging over all the volumes AV contained in ¥ yields
U, v,
<—é‘ puiui> = ——(P) UU; + Tflm axi T + T(pwiwi> +
1 i dw; ( au, dw; ) 5
T<t“"‘ ( X, + o, ) oX, + oL, > (3:3)
1t can be shown that the last summand in ( 3 5) is represented as

3t (7 + 725 ) (37 + 980 ) = 5 Clewewsd + - <iDOs>

4 [ 0U, 3[/') q (awi ‘ 6w,‘.\)
eik——z‘(m+ﬁ7 ol Tt (38)
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Therefore, a contribution to the kinetic energy introduced by the strain rate field €
in the scale d appears, Neglecting this effect, as well as the energy generated by the
mean gradient in the scale A, we obtain

Clgpuiusy = Y, <> UU; + Yo Cpwaw;) + o (ID:D:D 3.7
We furthermore transform the last summand in (3, 6)
Va0 = 1/oK( + i) (Qj + D™ (Q + D*)) =
Yo (5 + @3) (Q + @5) + Y/, GDFD*) — VpJwjo;
Inserting this result into (3, 7), we find
Clopuiusy = 1o P UUs 4 Yo (Qj 4 @) (R + @) + <pd E (3.8)
where E is the inner energy of the turbuient field
E=E,+ E, (3.9)
P> Ey = Chypwiw>,  (pd Ep = Yy QD™ — 1y Joj0;
We define the kinetic energy pulsation as follows:

(Mapusu)* = U; (pvy) + (R; + o) M* + (pEY* (3.10)
where E* = E * 4 E,* is selected so as to comply with the condition
Claptuy) + o (pugu)* = 1y piUy (3.11)

Let us ransform the kinetic energy flux analogously to the momentum and moment of
momentum fluxes

{5 puanssds =<[<"§‘ pu ) + (-ri;— Puiuiﬂ (U i+ %% & + v,-)>j

Hence
g puuguss = (M pusus> U; + <Yy pusiy)*v;d;

We now use the representation (3,10)
((';— puuy) * v;d; = Uy (powsd; + (¢ + @) (M35 + K(pE) *uid;
andifinany obtain 1 (3.12)
(g pugliu; = 5 PULD U + (pEY*vsd; — UiRy; — (¢ + @) pyj
Let us note that it is also possible to carry out the following wansformations:
Cpeusd = (pd <e> U; 4 <(pe)* vdj, & (PUilrdp = Ciakdlne
(s = T30 + E*vds T = tidi Ceae 8P = G
(Faue> = (F> U + (Fe*vy>,  (F*vd = C (@ + o) + 11 (3.13)
4, Motion and energy equations, Now, we substitute the resuitant aver-
aged expressions into the balance equations of the mass, momentum, moment of mo-

mentum and energy, We then cbtain [1] the differential equations of motion in the
following form :
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at X, =0 (4.1)
8<)U 3<)UU oR.;
3 *—fsr— T+TT<Fi> (4.2)

J(Q{ - o) + 57 J(Ql L) U; = a“ -" ek (Rux + Ti) + € (4.3)

U 3
%{— + gxt = — g (o =0 (4.4)

The total energy balance equation (3,1) becomes in conformity with (3. 8), (3.12),
(8.13)
@5 (3 + Vi) (e + 7 U0+ Ll @+e)@+o)+E)=

‘a_z;(UiRi}+(Qi+mi)pi5+7ii D+ OLTFF DU+ Co(Q+0p) +

3827 (— C(pe)* v5d5 — P E)* v3d; + Cti*vids + <8535) (4.5)

Now multiplying Eq. (4,1) by U/, and Ec. (4. 2) by the total angular velocity Q, + o,
we find the equations for the kinetic energies of the mean translational motion and the
mean rotational motion

oR;;
@ (& + U; %J-) (o0)= Uiz U1—2—+ UicF:  (4.8)
I(E + Uil ) [ @it 00 @+ 0) = @+ o) 37+
eire (Rpe 4+ Ti) (Qi 4 ©3) + Ci (R + o) (4.T)

Subtracting Egs, (4. 6), (4. 7) from the total energy equation (4. 5) and taking assount of
(4.1) and (4, 4), we obtain the heat influx equation (the equation for the total inner ener-

gy of the turbulized fluid) (4.8)
U, U R +m§)
p( + U, 3T )(e-}-E) (Rif +t11)_<T+—T’)+ Hij __;TY-J-__=

— (Rif* + %) eyy:0; + —a_x‘,_‘ (— <loe)* v3d5 — C(PE)* v3d5 + (tisvsd; + <q5>5)

Here Ry, R{;, 7ij, Ti; are, respectively, the symmerric and antisymmetric compon-
ents of the stress tensors R;;, Tyj, for example

Ri; = 3 (Ry; + Ry), Ri; = Y3 (Ry; — Ry)

The derivation of (4, 8) differs from the ordinary derivation [8] of the turbulent energy
equation by taking account of the presence of the rotational degrees of freedom of the
system characteristic for asymmertric hydromechanics [9],

5. Eatropy of a turbulized fluid, The balance equation of the entropy s
in the microvolume dV is 3 (psu.)

Jps Do a9 {9 =
At v oz =V gz, (T) (0.1)
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where g; / T is the entropy flux, T is the temperatme, and o is the rate of local ent-
i P WL TR

The entropy balance of a tmbulent system is formed [10] by a statistical averaging of
Eq,(5.1), Herein, as in [11], the procedure for taking the average of (5, 1) is performed
over the volume V but the necessity of taking the average over the areas [1] also is
hence taken into account .

4324 )
@ (G- UGE) = @+ S (T - et @2

, 1 , U\ | 1 93 9<T
3y = o5 (Tis + <P 8yj) (T)T,-') T T T f 5 (@ + T X,

du, U, dv;
Q= <(tu' — Tyj) (7;;' - ;—jj—)> = <fu‘* -;;';-
For simplicity, the effects of temperature and pressure pulsations (cf[11]) are omitted here,
Therefore, the production of the averaged entropy s corresponding to the waunsition
of mechanieal energy into heat is determined by the work of the mean viscous stresses
T;; over the field of mean velocities /; as well as the inner sowrce ¢ which corre-
sponds to the additional work of viscous stresses due to turbulization of the fluid, More~
over, the heat fluxes, governed by the influence of turbulization of the contact heat con-
duction <g;); appear in (5, 2), and the heat wansfer {(ps)*v;>; which is convective
in nature in the scale dV but turbulent diffusion in the scale V , is taken into account
also,

We emphasize that together the first two summands in the expression for (o) corre-
spond to the total viscous dissipation of mechanical energy into heat (in the case of no
transverse shear the viscous dissipation reduces to an energy sink ¢). If the balance
equation of the inner energy (heat influx) which is valid in the volume dV

ope | O0em) _ . Ou | 35
‘3?’+"'3£:— = 1j; 31,- i azi + Q (53)
is averaged in an anhlogous manner over the volume 17, then we obtain 5.4)
F) oU, d<qp )

® (= + Us5xr) = wgrs + 9+ 57— + <O + 537 T <= (0e)* v
The Gibbs relationship for the mean enwopy (s)and energy (e)
da<e> d <s> d 1 d 9

R ar <T> - p-d_t—(;)-’ at i U} ax’ (5'5)

follows from a comparison of (5.-2) and (5, 4) if we wse the equality (ef [10])
FE C(OO)* 21+ <T = (P9)* vids = 0

Let us subtract (5, 4) from the equation of the total inner energy of a turbulent field.
We then obtain the equation determining the inner energy of the inwinsically turbulent

superstructure 1 [0U,; U
o(5 +UIT)=Rfi’—z-(37r;+*—-axj)‘
8(Q;+w) 2

Ris"eigpo0 + Mij— T + 3 T (—~pE*v>; + ¥ (5.6)
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where the turbulent energy sink is 9 <t. %0
30,
¥ = ;}j‘ Lo 6.7

We note that the viscous dissipation due to pulsations is interpreted as an internal sink
in the turbulent energy equation in [12].

The work of the turbulent stresses R;;, 1;; over the field of mean wranslational and
angular velocities results in dissipation of the mean field mechanical energy into the
energy of chaotic ‘turbulent motion, which 15 "thermal” in nature in the scale V (but
mechanical in the scale dV). The turbulent entropy S and turbulization temperature
© can be introduced correspondingly as follows :

85 = (A — 7 Bubub) (‘a?,‘ + 5%, ) = Rafeson +
9@ +0) 5
Wij aiz’. + 5 {—pE*;+ ¥
or
dS o, 8 [<—0E%p, ¥
o =3I+ ax,( L) + 5 (5-8)

Here I is the local generation of turbulent entropy, and the quantity ¥ [ @. is a sink
of the turbilent entropy S§. Thus, the wotk of the Reynolds and other turbulent stresses
results in growth of the entropy (chaos) of turbulence, and viscous dissipation diminishes
the entropy (chaos) of turbulation,

Let us examine the particular case of a local stationary state, We neglect turbulent-
diffusion energy transfer and the pulsation work of viscous stresses on the boundaries of
the volume V. Then the sink is ¥ = -, and Eq, (5. 8) of the growth in turbulization
entropy reduces to the following:

dSidt = 3 — ¢/6 =0 (5.9)

Thus, in the stationary case the positive production I of turbulent entropy S must
be compensated by the negative influx of entropy ¥ / © (or the positive influx of
negentropy). In other words, in 2 specific sense a turbulent field is similar to a bielogi-
cal system [3, 4]. Indeed, the internal configurations of both systems are sustained be-
cause of the continuous influx of energy, It should be emphasized that this remark on
the influx of negative entropy corresponds substantially to the known Richardson=Kolmo-
gorov principle about the energy balance of the equilibrium hierarchy of vortices [8],
Furthermore, from (5, 9) in this stationary case we have that the work of the turbulent
stresses equals the volume viscous dissipation, and in combination with the wark of the
mean viscous stresses yields the total dissipation of the mechanical energy into heat,
The Gibbs relationship for a turbulent field

dE ds 1 d 1
T =0T+ Rbug oy (5-10)

follows from (5. 6) and (5. 8), i.e. the parameters of thr state of the turbulent system
are the temperature © and the mean density <{p).

According to (3, 9), the inner energy £ consists of two parts, the translational £,
and the rotational £, (the inner energy of turbulization),hence, a rather more general
construction can be carried out by introducing the two entropies Sy, and 8, and the two
temperatures 6, and 6, , respectively:
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dE,, it 1S, 1 d 1
e A, -rt‘" + 5 (Ruidid) 7 5 (5.11)
T A I =%

where Aj] and Ay are some forces (stresses) working on the displacements (strain in-
crements) dy;; and dyj;. Together the relations (5.11) yield

d ds as dxi® odxi® . A Ld i
'd£,==9'g;+(9m—9)—dt£+/\u Al R o 542

where 8 = 8,,, dS5 = dS,, <+ dS, is the increment in the total enwopy of turbulence,
Now, if the inner energy of the turbulent field is eliminated from (5. 6) and (5.12), we
then obtain a generalized equation for the entropy balance

as ds,
6(9)—-—(9 8 )(P)T--r-(Ru —rij )( J> — (R — ryg® eyjpog +
9 = dwe
(Wi — 1:3) (ax_) Ta‘x’)‘i'ax (—pE* v+ GX <. )j+w (5.13)

Here r;, rij, ny; are some stress tensor components ; they can be expressed in terms
of Aj}, Ay, if dyij /. dt, dy;;/ dt are related linearly to the tensors gU; / 4X; and
0(Q; + @;) / 8X;. The interoduction of these quantities correspond to taking account of
the "elastic” properties of the turbulization, The possibility of such effects is mentioned
in [13 — 15]. It is absolutely necessary to take them into account in analyzing the tur-
bulization of non-Newtonian fluids.

The inequality of the temperatures 6 == 0, permits obtaining the nonequilibrium
transition of turbulent field energy from translational to rotational "degrees of freedom™(*).

6. The closure problem, To find the governing relations (between the dyna-
mic and kinematic variables), we can use the Onsager formalism of the thermodynamics
of irreversible processes, Let us say that the introduction of turbulent viscosity is essen~
tially a particular case of such an approach,

1If we proceed from the requirement of a local growth in the total entropy dS; = 4§ +
ds, then the mutual influence of the strains generating the entropy in the microscale
(dV) and the macroscale (V) will consequently be taken into account, However,we will
consider that turbulization exerts no influence on the relation between <t;;and U,/ 8X;,
say, Correspondingly, we will use the requirements of positivity of <o> and I independ-
ently, The difficulties hence are related to the constructions for the streams in the scale
Vv, i.e, for the turbulent field,

The closing relationship between thermodynamic streams (of momentum and moment
of momentum) J, and the characteristics of the averaged field X; can be derived with
the use of the generalized [17] Onsager principle

7, =SdthLas (8=, t — ) X, (2, ) dz’ 6.1)

where L,g is the matrix of Onsager coefficients of functions of the turbulent field
swucture, This relationship is nonlocal, and yields averaged relationships for a rapidly

®) The thermodynamical analysis of the hierarchy of Richardson-Kolmogorov vortices
naturally requires the introduction of a2 whole spectrum of "degrees of freedom", and
the energy, temperature, and entropy, respectively, see [16].
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changing field structure, Formulas of the kind of (6.1) may be considered suitable for
calculating turbulent flows in alternating modes [8]. Equations (6, 1) can usually be

where L,; are functions of the point at which J/, and X, are defined and summation

is carried out with respect to recurrent subscripts, Nonzero elements of L,pand o = P
make it possible to take into account the cross effects and the Curie rule to separate

the interaction between streams of even and odd tensor dimension . New cross effects
may obviously appear in asymmetwic mechanics, For instance, the presence of a peculiar
thermomechanical effect related to the asymmetry of the moment-stress tensor was
pointed out in [9],

Since the structure of the turbulent field depends itself on streams J,, the related
Onsager type formulas are complex nonlinear relationships (while the effectiveness of
linear formulas (6, 2) is to a considerable extent lost), Owing to this, the matrix of coef-
ficients L, in the case of a twbulent field depends not only on parameters of state
(e. g. on turbulence temperature §) but, also, on the averaged parameress of velocity field
Xp (i.e, on tensors @U; / dX;, €40k, Oe'v;>;/8X;, . ..). The interaction of various
smeams X, can affect L,5. which may result in additional cross effects, The depend-
ence of internal structure on streams X, implies that the exclusion of one (or a part of
it) of the X streams may result not only in the change of cross coefficients L., but,
also, of diagonal elements of that matrix, Because of this the conventional requirement
for positive determinacy of each of the terms in the sum of products

2\ = L,z X/,

used in [11] is no longer applicable, and the only requirement is that £ must be strictly
positive, Owing to this, the superposition of various streams can theoretically yield ne-
gative individual elements of mawix L,;. This can possibly explain the effect of the
so=-called negative viscosity [18]. However, it should be borne in mind that the infer-
ence of the existence in certain flows (see [19]) of negative turbulent viscosity is based
on the comparison of profiles of averaged values of Q; and R;; (or U and R;; in the
ptoblem of flow in a circular channel {19, 20]) and their conventional interpretation
without taking into consideration the antisymmetric component of Reynoilds stresses.,
Whether it is sufficient to allow in such cases for asymmetric effects (see [20]) or it will
be necessary to introduce negative transport coefficients, can only be determined by the
comparison of specific calculations with experimental data,
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