Thus for $v_{0} \operatorname{ctg} \beta=a$ the maximum force derived by the theory of incompressible fluid exceeds by 62% that calculated for a compressible fluid.

The author thanks E. I. Grigoliuk and S.S. Grigorian for discussing this problem.

BIBLIOGRAPHY

1. Shiffman, M. and Spencer, D.C.. The force of impact on a cone striking a water surface (vertical entry). Communs. Pure and Appl. Math. , Vol. 4, N4, 1951.
2. Bagdoev, A. G., Three-dimensional Motions of a Continuous Medium in the .Presence of Shock Waves. Izd. Akad. Nauk ArmSSR, Erevan, 1961.
3. Logvinovich, G.V., Hydrodynamics of Flows with Free Boundaries. "Naukova Dumka", Kiev, 1969.
4. Chuang-Sheng-Lun, Theoretical investigations of slamming of cone-shaped bodies, J. of Ship Res., Vol. 13, N4, 1969.
5. Watanabe, S. . Resistance of impact on water surface. Inst. Phys. and Chem. Res. , Tokyo, Scientific papers, pt. 1 - cone, Vol. 12, 1929 and pt. 2-cone. Vol.14, 1930.
6. Sagomonian, A. Ia. and Poruchikov, V. B. . Three-dimensional Problems of Unstable Motion of a Compressible Fluid. Izd. MGU, 1970.
7. Frank, P. und von Mises, R., Die Differential- und Integralgleichungen der Mechanik und Physik, Vieweg us Sohn, Brauschweig, 1930. (Published also in English by Dover Publications under the title: Differential and Integral Equations of Mechanics and Physics).
8. Kostrov, B. V.. Self-similar problems of dynamics of pressing a rigid stamp into an elastic half-space. Izv. Akad. Nauk SSSR, OTN, Mekhanika i Mashinostroenie, N84, 1964.

Translated by J. J.D.
UDC 532. 517.4

ASTMMMEIRTC MDCHANICS OF TURBULENT FLOWS, ENERGY AND ENTROPY

PMM Vol. 37, N1, 1973, pp. 94-105
V. N. NIKOLAEVSKII
(Moscow)
(Received May 22, 1972)

Averaged equations of motion of a turbulized fluid in the presence of a preferred orientation of turbulent vortices were constructed in [1]. By taking account of an additional kinematic variable, the angular velocity of vortex self-rotation, the system of equations in [1] differs from the earlier theory of Mattioli [2].

The equations from [1] are supplemented herein by a turbulent energy balance equation in which the work of the moment stresses and the antisymmetric component of the Reynolds stress tensor is taken into account. It is shown that the inner energy determined by turbulization of the fluid depends on the root-meansquare values of the translational pulsation velocities and the anglular vortex velocities. The entropy and "temperature" of turbulization are introduced; the
entropy production equations are formed. The use of the Onsager formalism of the thermodynamics of irreversible processes is discussed. The stationary state of the system, characterized by an influx of negative entropy (this latter is typical for biological systems $[3,4]$) and a constant rate of entropy production, is considered.

1. Mass, momertum, and moment of momentum balance. The balance equations of the mass, momentum, and moment of momentum of a nonpolar fluid can be represented as [1]

$$
\begin{gather*}
\text { sented as [1] } \quad \frac{\partial}{\partial t}\langle\rho\rangle+\frac{\partial}{\partial X_{j}}\left\langle\rho u_{j}\right\rangle_{j}=0 \\
\frac{\partial}{\partial t}\left\langle\rho u_{i}\right\rangle+\frac{\partial}{\partial X_{j}}\left\langle\rho u_{i} u_{j}\right\rangle_{j}=\frac{\partial\left\langle t_{i j}\right\rangle_{j}}{\partial X_{j}}+\left\langle F_{i}\right\rangle \tag{1.1}\\
\frac{\partial}{\partial t}\left\langle\varepsilon_{i l h} \rho u_{l j k} \xi_{k}\right\rangle+\frac{\partial}{\partial X_{j}}\left\langle\varepsilon_{i l h} \rho u_{l} \xi_{i} u_{j}\right\rangle_{j}+\left\langle\varepsilon_{i l k} \rho u_{i} u_{n}\right\rangle_{i}= \\
\frac{\partial}{\partial X_{j}}\left\langle\varepsilon_{i l h} \xi_{l} t_{k j}\right\rangle_{j}+\left\langle\varepsilon_{i l k} t_{l k}\right\rangle_{k}+\left\langle\varepsilon_{i l k} \xi_{l} F_{k}\right\rangle
\end{gather*}
$$

Here ρ is the fluid density, U_{j} the velocity, F_{j} the volume force, $\varepsilon_{i t k}$ the alternating Levi-Civita tensor, 〈 > the symbol for averaging with respect to a volume element in the space $V=\Delta X_{1} \Delta X_{2} \Delta X_{3}, X_{j}$ coordinates of the center of gravity of the volume $V, \xi_{j}=x_{j}-X_{j}$ is the coordinate of a point within the volume V relative to the center of gravity $X_{j} ;\langle \rangle_{j}$ is the symbol for the average over of the face of the volume V to which the X_{j} axis is normal. Let us examine the case when the fluid flow in the volume $d V=d \xi_{1} d \xi_{2} d \xi_{3}$ satisfies the Navier-Stokes equations, i.e.

$$
t_{i j} \equiv t_{j i}=\left(-p+\frac{2}{3} \rho v \frac{\partial u_{k}}{\partial \xi_{i}}\right) \delta_{i j}+\rho v\left(\frac{\partial u_{j}}{\partial \xi_{i}}+\frac{\partial u_{i}}{\partial \xi_{j}}\right), \quad d V \ll V
$$

where p is the pressure, v the kinematic viscosity, and $\delta_{i j}$ the unit tensor. The velocity field in the volume $V \sim \Delta^{3}$ is represented as [1]

$$
\begin{equation*}
u_{i}\left(x_{k}, t\right)=U_{i}\left(X_{k}, t\right)+\frac{\partial U_{i}}{\partial \bar{X}_{k}}\left(x_{k}-X_{k}\right)+v_{i}\left(x_{k}, t\right) \tag{1.2}
\end{equation*}
$$

where ' U_{i} is the mean mass velocity of the fluid, v_{i} is an irreguiar component (pulsation) of the velocity. In the scale $d(\Delta \gg d)$ the quantity v_{i} is also representable as the first two members of the Taylor series

$$
v_{i}\left(\zeta_{k}\right)=w_{i}\left(\zeta_{k}\right)+\left(\partial w_{i} / d \zeta_{k}\right)\left(\zeta_{k}-\zeta_{k}\right)
$$

i. e. the following

$$
\begin{equation*}
{ }_{u_{i}\left(x_{k}, t\right)}^{u_{i}}=U_{i}\left(X_{k}, t\right)+\frac{\partial U_{i}}{\partial X_{k}} \xi_{i}+w_{i}\left(\zeta_{\kappa}, t\right)+\frac{\partial w_{i}}{\partial \zeta_{k}}\left(\xi_{k}-\zeta_{k}\right) \tag{1.3}
\end{equation*}
$$

is valid in the volumes $\Delta V \sim d^{3}$ instead of the representation (1.2). Here ζ_{k} is the coordinate of the center of gravity of ΔV. Averaging the field $(1,3)$ with respect to the volume ΔV yields

$$
\bar{u}_{i}\left(\zeta_{h}, t\right)=U_{i}\left(X_{k}, t\right)+\frac{\partial U_{i}^{\prime}}{\partial X_{k}} \zeta_{k}+w_{i}\left(\zeta_{k}, t\right)
$$

The elementary moment of momentum m_{i} can be represented correspondingly as

$$
m_{i}=\varepsilon_{i j k} \rho u_{j j_{k}}=\varepsilon_{i j_{h}} \rho\left(U_{j}+\frac{\partial U_{j}}{\partial X_{m}} \xi_{m}+w_{j}+\frac{\partial w_{j}}{\partial \zeta_{m}}\left(\xi_{m}-\zeta_{m}\right)\right) \xi_{k}
$$

Let us take the average of m_{i} over the volume ΔV. We obtain

$$
\begin{gathered}
\vec{m}_{i}=\varepsilon_{i j k}\left(\bar{\rho} U_{j \xi_{k}}+\frac{\partial U_{j}}{\partial X_{m}} \bar{\rho}_{\xi m} \zeta_{k}+\bar{\rho} w_{j \leqslant k}^{*}\right)+\varepsilon_{i j_{n}}\left(\frac{\partial U_{j}}{\partial X_{m}}+\frac{\partial w_{j}}{\partial \xi_{m}}\right) i_{m k} \\
i_{m k}=\frac{1}{\Delta V} \int_{\Delta V} \rho\left(\xi_{m}-\zeta_{m}\right)\left(\xi_{k}-\zeta_{k}\right) d \xi_{1} d \xi_{\mathrm{g}} d \xi_{s}
\end{gathered}
$$

where $i_{m k}$ is the specific moment of inertia [1] of the fluid in the volume ΔV. Then, taking the average \bar{m}_{i} over all the volumes ΔV contained in V, we obtain

$$
\begin{gather*}
\left\langle m_{i}\right\rangle=\varepsilon_{i j k} \frac{\partial U_{j}}{\partial X_{m}} I_{m k}+M_{i}, \quad M_{i}=\varepsilon_{i j k}\left\langle\left(\frac{\partial U_{j}}{\partial X_{m}}+\frac{\partial w_{j}}{\partial \zeta_{m}}\right) i_{m i}\right\rangle \tag{1.4}\\
I_{m k}=\frac{1}{V} \int_{i} \bar{\rho} \zeta_{n} \zeta_{m} d \zeta_{1} d \zeta_{2} d \zeta_{3}, \quad \varepsilon_{i j i} \frac{1}{V} \int_{V} \bar{\rho} u_{j=i}^{*} d \zeta_{-1} d \zeta_{2} d_{=3}^{c}=0
\end{gather*}
$$

Here $I_{m k}$ is the specific moment of inertia [5] of the fluid in the volume. V and the condition imposed on the field w_{j} corresponds to the simplifying assumption that only turbulent vortices of scale a are moment of momentum carriers. As in [1], let us neglect the first summand in the first item of (1.4) in the case of high turbulization, i_{0}. let us set $\left\langle m_{i}\right\rangle \approx M_{i}$. If the volumes ΔV are symmerical, then $i_{m k}=\frac{1}{2} i \delta_{m k}$ and also

$$
M_{i}=\left\langle i \Phi_{i}\right\rangle, \quad \Phi_{i}=\frac{1}{2} \varepsilon_{i j_{i}}\left\langle\frac{\partial U_{j}}{\partial X_{k}}+\frac{\partial w_{j}}{\partial \zeta_{k}}\right\rangle
$$

where the mean field of natural angular velocities ω_{i} can be introduced [1] such that

$$
\begin{gathered}
M_{i}=J\left(\Omega_{i}+\omega_{i}\right), \quad J \omega_{i}=\left\langle i^{*} \Phi_{i}^{*}\right\rangle \\
J=\langle i\rangle, \quad \Omega_{i}=\left\langle\Phi_{i}\right\rangle=\frac{1}{2} \varepsilon_{i j_{n}} \frac{\partial U_{j}}{\partial X_{i}}, \quad J \omega_{i}^{*}=i^{*} \Phi_{i}^{*}-\left\langle i^{*} \Phi_{i}^{*}\right\rangle
\end{gathered}
$$

where the asterisk denotes the pulsation. As regards the pulsation $M_{i}{ }^{*}$ of the moment of momentum, in conformity with the above it is then defined as follows:

$$
\begin{equation*}
M_{i}+M_{i}^{*}=\varepsilon_{i j k} \rho u_{j} \xi_{n} \tag{1.5}
\end{equation*}
$$

The momentum flux generated by turbulence is represented, as is known, in the form

$$
\begin{equation*}
\left\langle\rho u_{i} u_{j}\right\rangle_{j} \approx\langle\rho\rangle U_{i} U_{j}-R_{i j} \tag{1.6}
\end{equation*}
$$

where $R_{i j}$ is the Reynolds stress. According to [1], we have

$$
R_{i j}=-\left\langle\rho v_{i} v_{j}\right\rangle_{j}
$$

i. e, the tensor $R_{i j}$ generally contains antisymmetric components. As is customary in hydromechanics the momentum flux associated with the mean velocity gradient in the scale Δ is neglected in (1.6). By using the representation (1.3), it can also be shown that $R_{i j}$ consists of the two components

$$
R_{i j}=-\left\langle\rho w_{i} w_{j}\right\rangle_{j}-\left\langle\left(\frac{\partial U_{i}}{\partial X_{k}}+\frac{\partial w_{i}}{\partial \zeta_{k}}\right)\left(\frac{\partial U_{j}}{\partial X_{m}}+\frac{\partial w_{j}}{\partial \zeta_{m}}\right) i_{i m}\right\rangle_{j}
$$

The former corresponds to the mean translational pulsations of the fluid in the volume ΔV, and the latter is due to its rotations around the centers of mass ΔV. Let us represent the moment of momentum flux [1] in conformity with the relationship (1.5) as ($\mu_{i j}$ are the moment stresses)

$$
\begin{equation*}
\varepsilon_{i l k}\left\langle\rho u_{i} \xi_{k} u_{j}\right\rangle_{j} \approx M_{i} U_{j}-\mu_{i j}, \quad \mu_{i j}=-\left\langle M_{i}^{*} v_{j}\right\rangle_{j} \tag{1.7}
\end{equation*}
$$

2. Changes in the momeat of inertia. Let us multiply the continui.y equation valid [1] in the microscale $d x_{1} d x_{2} d x_{3}$ of a turbulized fluid

$$
\frac{\partial \rho}{\partial t}+\frac{\partial\left(\rho u_{j}\right)}{\partial x_{j}} \doteq 0
$$

by $\hat{\xi}_{k} \xi_{m}$. Then, taking the average with respect to the vloume V, we obtain

$$
\begin{equation*}
\frac{\partial}{\partial t}\left\langle\rho \xi_{k} \xi_{m}\right\rangle+\frac{\partial}{\partial X_{j}}\left\langle\rho \xi_{k} \xi_{m} u_{j}\right\rangle_{j}=\left\langle\rho u_{j} \xi_{m} \delta_{\kappa j}\right\rangle+\left\langle\rho u_{j} \xi_{i} \delta_{m j}\right\rangle \tag{2.1}
\end{equation*}
$$

It is easy to perform the following transformations:

$$
\left\langle\rho \xi_{k} \xi_{m}\right\rangle=I_{k m}+\left\langle i_{k m}\right\rangle
$$

as well as to determine the pulsation $i_{k m}{ }^{*}$ of the moment of inertia

$$
\rho \xi_{k} \xi_{m}=\left\langle\rho \xi_{k} \xi_{m}\right\rangle+i_{k m}^{*}
$$

Then the flux of the moment of inertia is determined as follows:

$$
\left\langle\rho \xi_{k} \xi_{m} u_{j}\right\rangle_{j}=\left\langle\rho \xi_{k} \xi_{m}\right\rangle U_{j}+\left\langle i_{k m}^{*} v_{j}\right\rangle_{j}
$$

and Eq_{o} (2.1) takes the form

$$
\begin{align*}
\frac{\partial}{\partial t}\left\langle\rho \xi_{k} \xi_{m}\right\rangle+ & \frac{\partial}{\partial X_{j}}\left\langle\rho \xi_{k} \xi_{m}\right\rangle U_{j}=\frac{\partial U_{k}}{\partial X_{n}}\left\langle\rho \xi_{n} \xi_{m}\right\rangle+\frac{\partial U_{m}}{\partial X_{n}}\left\langle\rho \xi_{n} \xi_{k}\right\rangle+ \\
& \left\langle\frac{\partial w_{k}}{\partial \xi_{n}} i_{m n}+\frac{\partial v_{m}}{\partial \xi_{n}} i_{n k}\right\rangle-\frac{\partial}{\partial X_{j}}\left\langle i_{k m} * v_{j}\right\rangle_{j} \tag{2.2}
\end{align*}
$$

The equation of the changes in the moment of inertia (2.2) extends the equation derived earlier in [6] for a fluid with inner structure and in [5] for an ordinary fluid, to the case of turbulent flux. The intrimic moment of inestia of liquid-crystalline media was considered in [7]. If it is considered that the moment of inertia I_{km} of a fluid in a unit volume V sarisfies the work equation [5]

$$
\begin{equation*}
\frac{\partial I_{k m}}{\partial t}+U_{j} \frac{\partial I_{k m}}{\partial X_{j}}=\frac{\partial U_{k}}{\partial X_{n}} I_{n m}+\frac{\partial U_{m}}{\partial X_{n}} I_{n k} \tag{2.3}
\end{equation*}
$$

then by forming the difference between (2.2) and (2.3), we find

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(J \delta_{k m}\right)+\frac{\partial}{\partial X_{j}}\left(J \delta_{k m} U_{j}\right)=2\left\langle i e_{k m}\right\rangle-\frac{\dot{\partial}}{\partial X_{j}}\left\langle t^{*} v_{j}\right\rangle ; \tag{2.4}
\end{equation*}
$$

where $e_{i n}$ is the strain rate tensor (see formulas (3.6)), and

$$
i_{k m}=1 / 2 i \delta_{k m}, \quad\left\langle i_{k m}\right\rangle=1 / 2 J \delta_{k m}
$$

If changes in the moment of inertia J are neglected because of local strains, then(2.4) becomes

$$
\begin{equation*}
\frac{\partial J}{\partial t}+U_{i} \frac{\partial J}{\partial X_{j}}=-\frac{\partial}{\partial X_{j}}\left\langle i^{*} v_{j}\right\rangle j \tag{2.5}
\end{equation*}
$$

The modification of the theory in which

$$
\frac{\partial J}{\partial t}+U_{j} \frac{\partial J}{\partial X_{j}}=0, \quad \frac{\partial}{\partial X_{j}}\left\langle i^{*} \nu_{j}\right\rangle j=0
$$

is considered in [1] and herein later.
3. Total energy balance, Let us write the total energy balance of a fluid in integral form for an arbitrary volume V_{1} fixed in space and bounded by a surface S_{1} :

$$
\begin{gather*}
\frac{\partial}{\partial t} \int_{i=1} \rho\left(e+\frac{u_{i} u_{i}}{2}\right) d V+\int_{S_{1}} \rho\left(e+\frac{u_{i} u_{i}}{2}\right) u_{n} d S_{n}=\int_{S_{1}} t_{i n} u_{i} d S_{n}+\int_{S_{1}} q_{n} d S_{n}+ \\
\int_{V_{1}} Q d V+\int_{S_{1}} c_{i n} \Phi_{i} d S_{n}+\int_{V_{1}} F_{k} u_{k} d V+\int_{V_{2}} \rho G_{k} \Phi_{k} d V \tag{3.1}
\end{gather*}
$$

where e is the inner energy of the fluid, q is the heat flux, Q are the internal heat sources, Φ_{i} is the vector of the total angular velocity of a fluid particle. Henceforth, as in (1.1), we shall assume that the moment stresses $C_{i n}$ and the volume moments G_{k} governed by the molecular structure of the fluid are identically zero.
If we select the volume $V=\Delta X_{1} \Delta X_{2} \Delta X_{3} \sim \Delta^{3}$ as the volume V_{1}, where Δ is the lonear scale of V, then (3.1) can be represented as

$$
\begin{gather*}
\frac{\partial\langle\rho e\rangle}{\partial t}+\frac{\partial}{\partial X_{j}}\left\langle\rho e u_{j}\right\rangle+\frac{\partial}{\partial t}\left\langle\frac{1}{2} u_{i} u_{i}\right\rangle+\frac{\partial}{\partial X_{j}}\left\langle\frac{1}{2} \rho u_{i} u_{i} u_{j}\right\rangle_{j}= \\
\frac{\partial}{\partial X_{j}}\left\langle t_{i} u_{i}\right\rangle_{j}+\frac{\partial\left\langle q_{j}\right\rangle_{j}}{\partial X_{j}}+\langle Q\rangle+\left\langle F_{k} u_{k}\right\rangle \tag{3.2}
\end{gather*}
$$

Let us take the average of the kinetic energy of the turbulized fluid by using the representation (1.3)

$$
\begin{align*}
& \frac{1}{2} \rho u_{i} u_{i}=\frac{1}{2} \rho U_{i} U_{i}+\rho U_{i}\left(\frac{\partial U_{i}}{\partial X_{k}} \xi_{k}+v_{i}\right)+\frac{1}{2} \rho w_{i} w_{i}+ \\
& \frac{1}{2} \rho \frac{\partial U_{i}}{\partial X_{k}} \frac{\partial U_{i}}{\partial X_{m}} \xi_{k} \xi_{m}+\frac{1}{2} \rho \frac{\partial w_{i}}{\partial \zeta_{k}} \frac{\partial w_{i}}{\partial \zeta_{n}}\left(\xi_{k}-\zeta_{k}\right)\left(\xi_{n}-\zeta_{n}\right)+ \\
& \frac{\partial U_{i}}{\partial X_{k}} \frac{\partial w_{i}}{\partial \zeta_{m}} \xi_{k}\left(\xi_{m}-\zeta_{m}\right)+\rho w_{i} \frac{\partial U_{i}}{\partial X_{k}} \xi_{k}+\rho w_{i} \frac{\partial w_{i}}{\partial \zeta_{k}}\left(\xi_{k}-\zeta_{k}\right) \tag{3.3}
\end{align*}
$$

We take the average of (3.3) over the volume ΔV

$$
\begin{align*}
& \frac{1}{2} \overline{\rho u_{i} u_{i}}=\frac{1}{2} \bar{\rho} U_{i} U_{i}+\bar{\rho} U_{i}\left(\frac{\partial U_{i}}{\partial \bar{X}_{k}} \zeta_{k}+w w_{i}\right)+\frac{1}{2} \bar{\rho} w_{i} w_{i}+ \\
& \frac{1}{2} \rho \frac{\partial U_{i}}{\partial X_{k}} \frac{\partial U_{i}}{\partial X_{k}} \zeta_{k} \zeta_{k}+\left(\frac{\partial U_{i}}{\partial \bar{X}_{m}}+\frac{\partial v_{i}}{\partial \zeta_{m}}\right)\left(\frac{\partial U_{i}}{\partial X_{k}}+\frac{\partial v_{i}}{\partial \zeta_{m}}\right) i_{k m} \tag{3.4}
\end{align*}
$$

Subsequent averaging over all the volumes ΔV contained in V yields

$$
\begin{align*}
\left\langle\frac{1}{2} \rho u_{i} u_{i}\right\rangle= & \frac{1}{2}\langle\rho\rangle U_{i} U_{i}+\frac{1}{2} I_{k m} \frac{\partial U_{i}}{\partial X_{k}} \frac{\partial U_{i}}{\partial X_{m}}+\frac{1}{2}\left\langle\rho w_{i} w_{i}\right\rangle+ \\
& \frac{1}{2}\left\langle i_{k m}\left(\frac{\partial U_{i}}{\partial X_{m}}+\frac{\partial w_{i}}{\partial \zeta_{m}}\right)\left(\frac{\partial U_{i}}{\partial X_{k}}+\frac{\partial w_{i}}{\partial \zeta_{k}}\right)\right\rangle \tag{3.5}
\end{align*}
$$

It can be shown that the last summand in (3.5) is represented as

$$
\begin{gather*}
\frac{1}{2}\left\langle i_{k m}\left(\frac{\partial U_{i}}{\partial X_{m}}+\frac{\partial w_{i}}{\partial \zeta_{m}}\right)\left(\frac{\partial U_{i}}{\partial X_{k}}+\frac{\partial v_{i}}{\partial \zeta_{k}}\right)\right\rangle=\frac{1}{4}\left\langle i e_{i k} e_{i k}\right\rangle+\frac{1}{2}\left\langle i \Phi_{j} \Phi_{j}\right\rangle \\
e_{i k}=\frac{1}{2}\left(\frac{\partial U_{i}}{\partial X_{k}}+\frac{\partial U_{k}}{\partial X_{i}}\right)+\frac{1}{2}\left(\frac{\partial w_{i}}{\partial \zeta_{k}}+\frac{\partial w_{k}}{\partial \zeta_{i}}\right) \tag{3.6}
\end{gather*}
$$

Therefore, a contribution to the kinetic energy introduced by the strain rate field $e_{i k}$ in the scale d appears. Neglecting this effect, as well as the energy generated by the mean gradient in the scale Δ, we obtain

$$
\begin{equation*}
\left\langle 1 / 2 \rho u_{i} u_{i}\right\rangle={ }^{1} / 2\langle\rho\rangle U_{i} U_{i}+{ }^{1 / 2}\left\langle\rho w_{i} w_{i}\right\rangle+{ }^{1 / 2}\left\langle i \Phi_{i} \Phi_{i}\right\rangle \tag{3.7}
\end{equation*}
$$

We furthermore transform the last summand in (3.6)

$$
\begin{array}{r}
1 / 2\left\langle i \Phi_{j} \Phi_{j}\right\rangle={ }^{1 / 2}\left\langle\left(J+i^{*}\right)\left(\Omega_{j}+\Phi_{j}^{*}\right)\left(\Omega_{j}+\Phi_{j}^{*}\right)\right\rangle= \\
1 / 2 J\left(\Omega_{j}+\omega_{j}\right)\left(\Omega_{j}+\omega_{j}\right)+1 / 2\left\langle i \Phi_{j}^{*} \Phi_{j}^{*}\right\rangle-1 / 2 J \omega_{j} \omega_{j}
\end{array}
$$

Inserting this result into (3.7), we find

$$
\begin{equation*}
\left\langle 1 / 2 \rho u_{i} u_{i}\right\rangle={ }^{1 / 2}\langle\rho\rangle U_{i} U_{i}+1 / 2 J\left(\Omega_{j}+\omega_{j}\right)\left(\Omega_{j}+\omega_{j}\right)+\langle\rho\rangle E \tag{3.8}
\end{equation*}
$$

where E is the inner energy of the turbulent field

$$
\begin{equation*}
E=E_{w}+E_{\omega} \tag{3.9}
\end{equation*}
$$

$$
\langle\rho\rangle E_{w}=\left\langle 1 / 2 \rho w_{i} u_{i}\right\rangle, \quad\langle\rho\rangle E_{\omega}={ }^{1 / 2}\left\langle i \Phi_{j}^{*} \Phi_{j}^{*} ;-{ }^{1 / 2} J \omega_{j} \omega_{j}\right.
$$

We define the kinetic energy pulsation as follows:

$$
\begin{equation*}
\left({ }^{1} / 2 \rho u_{i} u_{i}\right)^{*}=U_{i}\left(\rho v_{i}\right)+\left(\Omega_{i}+\omega_{i}\right) M_{i}^{*}+(\rho E)^{*} \tag{3.10}
\end{equation*}
$$

where $E^{*}=E_{w}^{*}+E_{\omega}{ }^{*}$ is selected so as to comply with the condition

$$
\begin{equation*}
\left\langle 1 / 2 \rho u_{i} u_{i}\right\rangle+1 / 2\left(\rho u_{i} u_{i}\right)^{*}=1 / 2 \rho u_{i} u_{i} \tag{3.11}
\end{equation*}
$$

Let us ransform the kinetic energy flux analogously to the momentum and moment of momentum fluxes

$$
\left\langle\frac{1}{2} \rho u_{i} u_{i} u_{j}\right\rangle_{j}=\left\langle\left[\left\langle\frac{1}{2} \rho u_{i} u_{i}\right\rangle+\left(\frac{1}{2} \rho u_{i} u_{i}\right)\right]\left(U_{i}+\frac{\partial U_{j}}{\partial X_{k}} \xi_{k}+v_{j}\right)\right\rangle_{i}
$$

Hence

$$
\left.\left\langle 1 / 2 \rho u_{i} u_{i} u_{j}\right\rangle_{j} \approx\left\langle 1 / 2 \rho u_{i} u_{i}\right\rangle U_{j}+\left\langle 1 / 2 \rho u_{i} u_{i}\right)^{*} v_{j}\right\rangle_{j}
$$

We now use the representation (3.10)

$$
\left\langle\left(\frac{1}{2} \rho u_{i} u_{i}\right)^{*} v_{j}\right\rangle_{j}=U_{i}\left\langle\rho v_{i} v_{j}\right\rangle_{j}+\left(\Omega_{i}+\omega_{i}\right)\left\langle M_{i}^{*} v_{j}\right\rangle_{j}+\left\langle(\rho E) * v_{j}\right\rangle_{j}
$$

and finally obrain

$$
\begin{equation*}
\left.\left\langle\frac{1}{2} \rho u_{i} u_{i} u_{j}\right\rangle_{j}=\left\langle\frac{1}{2} \rho u_{i} u_{i}\right\rangle U_{j}+(\rho E)^{*} v_{j}\right\rangle_{j}-U_{i} R_{i j}-\left(\Omega_{i}+\omega_{i}\right) \mu_{i j} \tag{3.12}
\end{equation*}
$$

Let us note that it is also possible to carry out the following transformations:

$$
\begin{gather*}
\left\langle\rho e u_{j}\right\rangle=\langle\rho\rangle\langle e\rangle U_{j}+\left\langle(\rho e)^{*} v_{j}\right\rangle_{j}, \quad \varepsilon_{i l k} \quad\left\langle\rho u_{l} u_{k}\right\rangle_{k}=\varepsilon_{i l k} H_{l k} \\
\left\langle t_{i} u_{i}\right\rangle_{j}=\tau_{i j} U_{i}+\left\langle t_{i j}{ }^{*} v_{i}\right\rangle_{j}, \quad \tau_{i j}=\left\langle t_{i j}\right\rangle_{j}, \quad\left\langle\varepsilon_{i l k} \xi_{l} F_{k}\right\rangle=C_{i} \\
\left\langle F_{k} u_{k}\right\rangle \approx\left\langle F_{k}\right\rangle U_{k}+\left\langle F_{k}^{*} v_{k}\right\rangle, \quad\left\langle F_{k}{ }^{*} v_{k}\right\rangle=C_{i}\left(\Omega_{i}+\omega_{i}\right)+\Pi \tag{3.13}
\end{gather*}
$$

4. Motion and energy equations. Now, we substitute the resultant averaged expressions into the balance equations of the mass, momentum, moment of momentum and energy. We then obtain [1] the differential equations of motion in the following form:

$$
\begin{gather*}
\frac{\partial\langle\rho\rangle}{\partial t}+\frac{\partial\langle\rho\rangle U_{j}}{\partial X_{j}}=0 \tag{4.1}\\
\frac{\partial\langle\rho\rangle U_{i}}{\partial t}+\frac{\partial\langle\rho\rangle U_{i} U_{j}}{\partial X_{j}}=\frac{\partial R_{i j}}{\partial X_{j}}+\frac{\partial \tau_{i j}}{\partial X_{j}}+\left\langle F_{i}\right\rangle \tag{4.2}\\
\frac{\partial}{\partial t} J\left(\Omega_{i}+\omega_{i}\right)+\frac{\partial}{\partial X_{j}} J\left(\Omega_{i}+\omega_{i}\right) U_{j}=\frac{\partial \mu_{i j}}{\partial X_{j}}+\varepsilon_{i l k}\left(R_{l k}+\tau_{l k}\right)+C_{i} \tag{4.3}\\
\frac{\partial J}{\partial t}+\frac{\partial J U_{j}}{\partial X_{j}}=-\frac{\partial}{\partial X_{j}}\left\langle i^{*} v_{j}\right\rangle_{j}=0 \tag{4.4}
\end{gather*}
$$

The total energy balance equation (3.1) becomes in conformity with (3.8), (3.12),

$$
\begin{gathered}
(3.13) \\
\langle\rho\rangle\left(\frac{\partial}{\partial t}+U_{j} \frac{\partial}{\partial X_{j}}\right)\left(e+\frac{1}{2} U_{i} U_{i}+\frac{1}{2} \frac{J}{\langle\rho\rangle}\left(\Omega_{i}+\omega_{i}\right)\left(\Omega_{i}+\omega_{i}\right)+E\right)= \\
\frac{\partial}{\partial X_{j}}\left(U_{i} R_{i j}+\left(\Omega_{i}+\omega_{i}\right) \mu_{i j}+\tau_{i j} U_{i}\right)+Q+\Pi+\left\langle F_{k}\right\rangle U_{k}+C_{k}\left(\Omega_{k}+\omega_{k}\right)+ \\
\frac{\partial}{\partial X_{j}}\left(-\left\langle(\rho e)^{*} v_{j}\right\rangle_{j}-\left\langle(\rho E)^{*} v_{j}\right\rangle_{j}+\left\langle t_{i j}{ }^{*} v_{i}\right\rangle_{j}+\left\langle q_{j}\right\rangle_{j}\right)
\end{gathered}
$$

Now multiplying Eq. (4.1) by U_{i} and Ec.(4.2) by the total angular velocity $\Omega_{i}+\omega_{i}$, we find the equations for the kinetic energies of the mean translational motion and the mean rotational motion

$$
\begin{gather*}
\langle\rho\rangle\left(\frac{\partial}{\partial t}+U_{j} \frac{\partial}{\partial X_{j}}\right)\left(\frac{1}{2} U_{i} U_{i}\right)=U_{i} \frac{\partial R_{i j}}{\partial X_{j}}+U_{i} \frac{\partial \tau_{i j}}{\partial X_{j}}+U_{i}\left\langle F_{i}\right\rangle \tag{4.6}\\
J\left(\frac{\partial}{\partial t}+U_{i} \frac{\partial}{\partial \bar{X}_{j}}\right)\left(\frac{1}{2}\left(\Omega_{i}+\omega_{i}\right)\left(\Omega_{i}+\omega_{i}\right)\right)=\left(\Omega_{i}+\omega_{i}\right) \frac{\partial \mu_{i j}}{\partial X_{j}}+ \\
\varepsilon_{i l k}\left(R_{l k}+\tau_{l k}\right)\left(\Omega_{i}+\omega_{i}\right)+C_{i}\left(\Omega_{i}+\omega_{i}\right) \tag{4.7}
\end{gather*}
$$

Subtracting Eqs. (4.6), (4.7) from the total energy equation (4.5) and taking assount of (4.1) and (4.4), we obtain the heat influx equation (the equation for the total inner energy of the turbulized fluid)

$$
\begin{align*}
& \rho\left(\frac{\partial}{\partial t}+U_{i} \frac{\partial}{\partial X_{j}}\right)(e+E)=\left(R_{i j}+\tau_{i j}{ }^{j}\right) \frac{1}{2}\left(\frac{\partial U_{i}}{\partial X_{j}}+\frac{\partial U_{j}}{\partial X_{i}}\right)+\mu_{i j} \frac{\partial\left(\Omega_{i}+\omega_{i}\right)}{\partial X_{j}}= \tag{4.8}\\
& -\left(R_{i j}{ }^{a}+\tau_{i j}{ }^{a}\right) \varepsilon_{i j ;} \omega_{i}+\frac{\partial}{\partial X_{j}}\left(-\left\langle(\rho e)^{*} v_{j}\right\rangle_{j}-\left\langle(\rho E)^{*} v_{j}\right\rangle_{j}+\left\langle t_{i j} v_{j}\right\rangle_{j}+\left\langle q_{j}\right\rangle_{j}\right)
\end{align*}
$$

Here $R_{i j}^{s}, R_{i j}^{a}, \tau_{i j}^{s}, \tau_{i j}^{a}$ are, respectively, the symmetric and antisymmetric components of the stress tensors $R_{i j}, \tau_{i j}$, for example

$$
R_{i j}^{2}=1 / 2\left(R_{i j}+R_{j i}\right), \quad R_{i j}^{a}={ }^{1 / 2}\left(R_{i j}-R_{j i}\right)
$$

The derivation of (4.8) differs from the ordinary derivation [8] of the turbulent energy equation by taking account of the presence of the rotational degrees of freedom of the system characteristic for asymmerric hydromechanics [9].
5. Eatropy of a turbulised fiuld. The balance equation of the entropy s in the microvolume $d V$ is

$$
\begin{equation*}
\frac{\partial \rho s}{\partial t}+\frac{\partial\left(\rho s u_{i}\right)}{\partial x_{i}}=\sigma-\frac{\partial}{\partial x_{i}}\left(\frac{q_{i}}{I^{\prime}}\right) \tag{5.1}
\end{equation*}
$$

where q_{i} / T is the entropy flux, T is the remperature, and σ is the rate of local entropy production

$$
\sigma=\frac{1}{T}\left(t_{i j}+p \delta_{i j}\right) \frac{\partial u_{i}}{\partial x_{j}}+\frac{q_{i}}{1^{\prime 2}} \frac{\partial T}{\partial x_{i}}+\frac{Q}{T}
$$

The entropy balance of a turbulent system is formed [10] by a statistical averaging of Eq.(5.1). Herein, as in [11], the procedure for taking the average of (5.1) is performed over the volume V but the necessity of taking the average over the areas [1] also is hence taken into account

$$
\begin{gather*}
\langle\rho\rangle\left(\frac{\partial\langle\delta\rangle}{\partial t}+U_{i} \frac{\partial\langle s\rangle}{\partial X_{i}}\right)=\langle\sigma\rangle+\frac{\partial}{\partial X_{i}}\left(\frac{\left\langle q_{i}\right\rangle_{i}}{\langle T\rangle}-\left\langle(\rho s)^{*} v_{i}\right\rangle_{i}\right) \tag{5.2}\\
\langle s\rangle=\frac{1}{\langle T\rangle}\left\langle\tau_{i j}+\langle p\rangle \delta_{i j}\right)\left(\frac{\partial U_{i}}{\partial X_{j}}\right)+\frac{1}{\langle T\rangle} \varphi+\frac{1}{\langle T\rangle}\langle Q\rangle+\frac{\left\langle q_{i}\right\rangle_{i}}{\langle T\rangle^{2}} \frac{\partial\langle T\rangle}{\partial X_{j}} \\
\varphi=\left\langle\left(t_{i j}-\tau_{i j}\right)\left(\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial U_{i}}{\partial X_{j}}\right)\right\rangle=\left\langle t_{i j}^{*} \frac{\partial v_{i}}{\partial x_{j}}\right\rangle
\end{gather*}
$$

For simplicity, the effects of temperature and pressure pulsations (cf[11]) are omitted here.
Therefore, the production of the averaged entropy s corresponding to the transition of mechanical energy into heat is derermined by the work of the mean viscous stresses $\tau_{i j}$ over the field of mean velocities U_{j} as well as the inner source φ which corresponds to the additional work of viscous stresses due to turbulization of the fluid. Moreover, the heat fluxes, governed by the influence of turbulization of the contact hear conduction $\left\langle q_{i}\right\rangle_{i}$ appear in (5.2), and the heat transfer $\left\langle(\rho s)^{*} v_{j}\right\rangle_{j}$ which is convective in nature in the scale $d V$ but turbulent diffusion in the scale V, is taken into account also.

We emphasize that together the first two summands in the expression for $\langle\sigma\rangle$ correspond to the total viscous dissipation of mechanical energy into heat (in the case of no transverse shear the viscous dissipation reduces to an energy sink φ). If the balance equation of the inner energy (heat influx) which is valid in the volume $d V$

$$
\begin{equation*}
\frac{\partial \rho e}{\partial t}+\frac{\partial\left(\rho e u_{i}\right)}{\partial x_{i}}=t_{i j} \frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial q_{i}}{\partial x_{i}}+Q \tag{5.3}
\end{equation*}
$$

is averaged in an analogous manner over the volume V, then we obtain

$$
\begin{equation*}
\langle\rho\rangle\left(\frac{\partial\langle e\rangle}{\partial t}+U_{i} \frac{\partial\langle e\rangle}{\partial X_{i}}\right)=\tau_{i j} \frac{\partial U_{i}}{\partial X_{j}}+\varphi+\frac{\partial\left\langle q_{i}\right\rangle}{\partial X_{i}}+\langle Q\rangle+\frac{\partial}{\partial X_{i}}\left\langle-(\rho e)^{*} v_{i}\right\rangle_{i} \tag{5.4}
\end{equation*}
$$

The Gibbs relationship for the mean entropy $\langle s\rangle$ and energy $\langle e\rangle$

$$
\begin{equation*}
\langle\rho\rangle \frac{d\langle e\rangle}{d t}=\langle T\rangle \frac{d\langle s\rangle}{d t}-p \frac{d}{d t} \frac{1}{\langle\rho\rangle}, \quad \frac{d}{d t}=\frac{\partial}{\partial t}+U_{j} \frac{\partial}{\partial X_{j}} \tag{5.5}
\end{equation*}
$$

follows from a comparison of (5.2) and (5.4) if we use the equality (cf [10])

$$
\frac{\partial}{\partial X_{i}}\left\langle(\rho e)^{*} v_{i}\right\rangle_{i}+\langle T\rangle \frac{\partial}{\partial X_{i}}\left\langle(\rho s)^{*} v_{i}\right\rangle_{i}=0
$$

Let us subtract (5.4) from the equation of the total inner energy of a tumbulent field. We then obtain the equation determining the inner energy of the incrinsically turbulent superstructure

$$
\begin{gather*}
\rho\left(\frac{\partial E}{\partial t}+U_{j} \frac{\partial E}{\partial X_{j}}\right)=R_{i j} \frac{1}{2}\left(\frac{\partial U_{i}}{\partial X_{j}}+\frac{\partial U_{j}}{\partial X_{i}}\right)- \\
R_{i j}{ }^{{ }^{a} \varepsilon_{i j k} \omega_{k}}+\mu_{i j} \frac{\partial\left(\Omega_{i}+\omega_{i}\right)}{\partial \bar{X}_{j}}+\frac{\partial}{\partial X_{j}}\left\langle-\rho E^{*} v_{j}\right\rangle_{j}+\Psi \tag{5.6}
\end{gather*}
$$

where the turbulent energy sink is

$$
\begin{equation*}
{ }^{15}=\frac{\partial\left\langle t_{i j}{ }^{*} v_{i}\right\rangle_{j}}{\partial \bar{X}_{j}}-\varphi \tag{5.7}
\end{equation*}
$$

We note that the viscous dissipation due to pulsations is interpreted as an internal sink in the turbulent energy equation in [12].

The work of the turbulent stresses $R_{i j}, \mu_{i j}$ over the field of mean translational and angular velocities results in dissipation of the mean field mechanical energy into the energy of chaotic turbulent motion, which is "thermal" in nature in the scale V (but mechanical in the scale $d V$). The turbulent entropy S and turbulization temperature θ can be introduced correspondingly as follows:

$$
\begin{gathered}
\Theta \frac{d S}{d t}=\left(R_{i j}{ }^{*}-\frac{1}{3} R_{k l} \delta_{k l} \delta_{i j}\right) \frac{1}{2}\left(\frac{\partial U_{i}}{\partial X_{j}}+\frac{\partial U_{j}}{\partial X_{i}}\right)-R_{i j}{ }^{a} \varepsilon_{i j k} \omega_{k}+ \\
\mu_{i j} \frac{\partial\left(\Omega_{i}+\omega_{i}\right)}{\partial X_{j}}+\frac{\partial}{\partial X}\left\langle-\rho E^{*} v_{j}\right\rangle_{j}+\Psi
\end{gathered}
$$

or

$$
\begin{equation*}
\frac{d S}{d t}=\Sigma+\frac{\partial}{\partial X_{j}}\left(\frac{\left\langle-\rho E^{*} v_{j}\right\rangle_{j}}{\theta}\right)+\frac{\Psi}{\theta} \tag{5.8}
\end{equation*}
$$

Here Σ is the local generation of turbulent entropy, and the quantity Ψ / θ is a sink of the turbilent entropy S. Thus, the work of the Reynolds and other turbulent stresses results in growth of the entropy (chaos) of turbulence, and viscous dissipation diminishes the entropy (chacs) of turbulation.

Let us examine the particular case of a local stationary state. We neglect turbulentdiffusion energy transfer and the pulsation work of viscous stresses on the boundaries of the volume V. Then the sink is $\Psi=-\varphi$, and Eq. (5.8) of the growth in turbulization entropy reduces to the following:

$$
\begin{equation*}
d S / d t=\Sigma-\varphi / \Theta=0 \tag{5.9}
\end{equation*}
$$

Thus, in the stationary case the positive production Σ of turbulent entropy S must be compensated by the negative influx of entropy Ψ / Θ (or the positive influx of negentropy). In other words, in a specific sense a turbulent field is similar to a bielogical system $[3,4]$. Indeed, the internal configurations of both systems are sustained because of the continuous influx of energy. It should be emphasized that this remark on the influx of negative entropy corresponds substantially to the known Richardson-Kolmogorov principle about the energy balance of the equilibrium hierarchy of vortices [8]. Furthermore, from (5.9) in this stationary case we have that the work of the turbulent stresses equals the volume viscous dissipation, and in combination with the work of the mean viscous stresses yields the total dissipation of the mechanical energy into heat. The Gibbs relationship for a turbulent field

$$
\begin{equation*}
\frac{d E}{d t}=\Theta \frac{d S}{d t}+\frac{1}{3} R_{i j} \delta_{i j} \frac{d}{d t} \frac{1}{\langle\rho\rangle} \tag{5.10}
\end{equation*}
$$

follows from (5.6) and (5.8), i.e. the parameters of thr state of the turbulent system are the temperature Θ and the mean density $\langle\rho\rangle$.

According to (3.9), the inner energy E consists of two parts, the translational E_{w} and the rotational E_{ω} (the inner energy of turbulization), hence, a rather more general construction can be carried out by introducing the two entropies S_{w} and S_{ω} and the two temperatures θ_{w} and θ_{ω}, respectively:

$$
\begin{gather*}
\frac{d E_{w}}{d t} \div \Lambda_{i j} w \frac{d \chi_{i j}{ }^{*}}{d t}=\theta_{w} \frac{d S_{w}}{d t}+\frac{1}{3}\left(R_{i j} \delta_{i j}\right) \frac{d}{d t} \frac{1}{\langle p\rangle} \tag{5.11}\\
\frac{d E_{\omega}}{d t} \div \Lambda_{i j}{ }^{\omega} \frac{d \chi^{\omega}}{d t}=\theta_{\omega} \frac{d S_{\omega}}{d t}
\end{gather*}
$$

where $\Lambda_{i j}^{w}$ and $\Lambda_{i j}^{\omega}$ are some forces (stresses) working on the displacements (strain in crements) $d x_{i j}^{2 p}$ and $d x_{i j}^{\omega}$. Together the relations (5.11) yield

$$
\begin{equation*}
\frac{d E}{d t}=\theta \frac{d S}{d t}+\left(\theta_{\omega}-\theta\right) \frac{d S_{\omega}}{d t}+\Lambda_{i j} j^{\omega} \frac{d \chi_{i j} j^{\omega}}{d t}+\Lambda_{i j}{ }^{\omega} \frac{d \chi_{i j}{ }^{\omega}}{d t}+\frac{1}{3}\left(R_{i j} \delta_{i j}\right) \frac{d}{d t} \frac{1}{\langle p\rangle} \tag{5.12}
\end{equation*}
$$

where $\theta=\theta_{w}, d S=d S_{w}+d S_{\omega}$ is the increment in the total entropy of turbulence. Now, if the inner energy of the turbulent field is eliminated from (5.6) and (5.12), we then obtain a generalized equation for the entropy balance

$$
\begin{gather*}
\theta\langle\rho\rangle \frac{d S}{d t}=\left(\theta-\theta_{\omega}\right)\langle\rho\rangle \frac{d S_{\omega}}{d t}+\left(R_{i j} j^{s}-r_{i j}\right)\left(\frac{\partial U_{i}}{\partial X_{j}}\right)^{s}-\left(R_{i j}^{a} \rightarrow r_{i j}{ }^{a}\right) \varepsilon_{i j k} \omega_{k}+ \\
\left(\mu_{i j}-\eta_{i j}\right)\left(\frac{\partial \Omega_{0}}{\partial X_{j}}+\frac{\partial \omega_{0}}{\partial \bar{X}_{j}}\right)+\frac{\partial}{\partial X_{j}}\left\langle-\rho E^{*} v_{j}\right\rangle_{j}+\frac{\partial}{\partial X_{j}}\langle\ldots\rangle_{j}+\Psi \tag{5.13}
\end{gather*}
$$

Here $r_{i j}{ }^{s}, r_{i j}^{a}, \eta_{i j}$ are some stress tensor components; they can be expressed in terms of $\Lambda_{i j}^{w}, \Lambda_{i j}^{\omega}$ if $d \chi_{i j}^{w} / d t, d \chi_{i j}^{\omega} / d t$ are related linearly to the tensors $\partial U_{i} / \partial X_{j}$ and $\partial\left(\Omega_{i}+\omega_{i}\right) / \partial X_{j}$. The interoduction of these quantities correspond to taking account of the "elastic" properties of the turbulization. The possibility of such effects is mentioned in [13-15]. It is absolutely necessary to take them into account in analyzing the turbulization of non-Newtonian fluids.

The inequality of the temperatures $\theta \neq \theta_{\ldots}$, permits obtaining the nonequilibrium transition of turbulent field energy from translational to rotational "degrees of freedom"(").
6. The closure problem. To find the governing relations (between the dynamic and kinematic variables), we can use the Onsager formalism of the thermodynamics of irreversible processes. Let us say that the introduction of turbulent viscosity is essentially a particular case of such an approach.

If we proceed from the requirement of a local growth in the total entropy $d S_{t}=d S+$ $d s$, then the mutual influence of the strains generating the entropy in the microscale $(d V)$ and the macroscale (V) will consequently be taken into account. However, we will consider that turbulization exerts no influence on the relation between $\tau_{i j}$ and $\partial U_{i} / \partial X_{i}$, say. Correspondingly, we will use the requirements of positivity of $\langle\sigma\rangle$ and Σ independently. The difficulties hence are related to the constructions for the streams in the scale V, i. e. for the turbulent field.

The closing relationship between thermodynamic streams (of momentum and moment of momentum) J_{α} and the characteristics of the averaged field X_{β} can be derived with the use of the generalized [17] Onsager principle

$$
\begin{equation*}
J_{a}=\int d t^{\prime} \int L_{x, 3}\left(x-x^{\prime}, t-t^{\prime}\right) X_{3}\left(x^{\prime}, t^{\prime}\right) d x^{\prime} \tag{6.1}
\end{equation*}
$$

where $L_{\alpha \beta}$ is the matrix of Onsager coefficients of functions of the turbulent field structure. This relationship is nonlocal, and yields averaged relationships for a rapidly
-) The thermodynamical analysis of the hierarchy of Richardson-Kolmogorov vortices naturally requires the introduction of a whole spectrum of "degrees of freedom", and the energy, temperature, and entropy, respectively, see [16].
changing field structure. Formulas of the kind of (6.1) may be considered suitable for calculating turbulent flows in altemating modes [8]. Equations (6.1) can usually be reduced to

$$
\begin{equation*}
J_{\alpha}=L_{\alpha \beta} X_{\beta} \tag{6.2}
\end{equation*}
$$

where $L_{\alpha \beta}$ are functions of the point at which J_{α} and X_{β} are defined and summation is carried out with respect to recurrent subscripts. Nonzero elements of $L_{\alpha \beta}$ and $\alpha \neq \beta$ make it possible to take into account the cross effects and the Curie rule to separate the interaction between streams of even and odd tensor dimension. New cross effects may obviously appear in asymmetric mechanics. For instance, the presence of a peculiar thermomechanical effect related to the asymmetry of the moment-stress tensor was pointed out in [9].

Since the structure of the turbulent field depends itself on streams J_{3}, the related Onsager type formulas are complex nonlinear relationships (while the effectiveness of linear formulas (6.2) is to a considerable extent lost). Owing to this, the matrix of coefficients $L_{x, 3}$ in the case of a turbulent field depends not only on parameters of state (e.g. on turbulence temperature θ) but, also, on the averaged paramerers of velocity field X_{B} (i.e. on rensors $\partial U_{i} / \partial X_{j}, \varepsilon_{i j k} \omega_{k}+\partial\left\langle e^{\prime} v_{j}\right\rangle_{j} / \partial X_{j}, \ldots$). The interaction of various streams X_{β} can affect $L_{\alpha \beta}$. which may result in additional cross effects. The dependence of internal structure on streams X_{β} implies that the exclusion of one (or a part of it) of the X_{β} streams may result not only in the change of cross coefficients $L_{\alpha \beta}$ but, also, of diagonal elements of that matrix. Because of this the conventional requirement for positive determinacy of each of the terms in the sum of products

$$
\Sigma=L_{\alpha \beta} X_{\beta} J_{a}
$$

used in [11] is no longer applicable, and the only requirement is that Σ must be strictly positive. Owing to this, the superposition of various streams can theoretically yield negative individual elements of matrix $L_{\alpha \beta}$. This can possibly explain the effect of the so-called negative viscosity [18]. However, it should be borne in mind that the inference of the existence in certain flows (see [19]) of negative turbulent viscosity is based on the comparison of profiles of averaged values of Ω_{i} and $R_{i j}$ (or U and $R_{i j}$ in the problem of flow in a circular channel [19, 20]) and their conventional interpretation without taking into consideration the antisymmetric component of Reynolds stresses. Whether it is sufficient to allow in such cases for asymmetric effects (see [20]) or it will be necessary to introduce negative transport coefficients, can only be determined by the comparison of specific calculations with experimental data.

BIBLIOGRAPHY

1. Nikolaevskii, V. N., Nonsymmeric mechanics of turbulent flows. PMM Vol. 34, NB3, 1970.
2. Mattioli, G. D., Teoria Dinamica dei Regimi Fluidi Turbulenti, Padova. CEDAM, p. 1323, 1937.
3. Schroedinger, E. . What is life from the point of view of physics? (Russian translation), Moscow, IIL, 1947.
4. Prigogine, I., Introduction to the Thermodynamics of Irreversible Processes, 2nd Ed. N. Y. -London, Interscience, 1961.
5. Nigmatulin, R.I. and Nikolaevskii, V. N., Diffusion of a vortex and conservation of moment of momentum in dynamics of nonpolar fluids. PMM Vol. 34, N2, 1970.
6. Eringen, A.C., Simple microfluids. Intern.J. Eng.Sci., Vol. 2, N2, 1964.
7. Aero, E.L. and Bulygin. A.N., Kinematics of nematic fluid crystals. Prikl Mekh, Vol. 8, Ne3, 1972.
8. Monin, A.S. and Iaglom, A.M., Statistical Hydromechanics. Mechanics of Turbulence. Pt. 1, Moscow, Fizmatgiz, 1965.
9. Listrov, A. T., Model of a viscous fluid with nonsymmetric stress tensor, PMM Vol. 31, NR1, 1967.
10. Favie, A., Equations statistiques des gaz turbulents, In: Problems of the Hydrodynamics and Mechanics of Continuous Media. Moscow, "Nauka", 1909.
11. Nevzgliadov,V.G.. Thermodynamics of turbulent systems. Zh.Eksp. Teor. Fiz., Vol. 39, N6/12, 1960.
12. Glushko, G.S., Some singularities of turbulent incompressible fluid flows with transverse shear. Izv. Akad. Nauk SSSR, Mekh, Zhidk. i Gaza, NP4, 1971.
13. Rivlin, R. S., The relation between the flow of non-Newtonian fluids and turbulent Newtonian fluids. Quart. Appl. Math., Vol. 15, N2, 1957.
14. Moffatt, H. K., The interaction of turbulence with strong wind shear. In: Atmospheric Turbulence and Radiowave Propagation. Transactions of an International Colloquium, Moscow, 1965, (pp. 139-156), Moscow, "Nauka", 1967.
15. Crow, S.C. . Viscoelastic properties of fine-grained incompressible turbulence. J. Fluid Mech., Vol. 33, pt. 1, 1968.
16. Nikolaevskii, V.N., Asymmetric mechanies and the theory of turbulence. Arch. Mech. Stosowanej, Vol. 24, N1, 1972.
17. Chester, G., Theory of irreversible Processes (Russian translation). Moscow, "Nauka", 1966.
18. Starr, W, , Physics of Phenomena with Negative Viscosity (Russian tramslation). Moscow, "Mir", 1971.
19. Eskinazi, S., Ecoulements turbulents avec production négative d'énergie. J. de Méchanique, Vol. 3, N3, 1964.
20. Ferrari, C. , On the differential equations of turbulent flow. In: Mechanics of Continuous Media and Kindred Problems of Analysis (pp. 555-556), Moscow, "Nauka" 1972.
